1,400
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Editorial: plant-microbial symbiosis toward sustainable food security

, , &
Article: 2298054 | Received 04 Nov 2023, Accepted 16 Dec 2023, Published online: 05 Jan 2024

References

  • UN Department of Economic and Social Affairs - Population Division. Global population growth and sustainable development. United Nations; 2021. www.unpopulation.org.
  • de Los Santos-Villalobos S, Parra-Cota FI. Current trends in plant growth-promoting microorganisms research for sustainable food security. Curr Res Microbial Sci. 2021;2(October 2020):100016. doi:10.1016/j.crmicr.2020.100016.
  • Tripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW. Estimates for world population and global food availability for global health. InThe role of functional food security in global health. Academic Press; 2018. pp. 3–4. doi:10.1016/B978-0-12-813148-0.00001-3.
  • Ibarra-Villarreal AL, Parra-Cota FI, Yepez EA, Gutiérrez-Coronado MA, Valdez-Torres LC, de Los Santos-Villalobos S. Impact of a shift from conventional to organic wheat farming on soil cultivable fungal communities in the Yaqui Valley, Mexico. Impacto del cambio en el manejo del cultivo de trigo de convencional a orgánico sobre las comunidades fúngicas cultivables del. Agrociencia. 2020;54(5):643–659. https://dialnet.unirioja.es/servlet/articulo?codigo=7542484&info=resumen&idioma=ENG.
  • Porter SS, Sachs JL. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol Evol. 2020;35(5):426–439. doi:10.1016/J.TREE.2020.01.006.
  • Suman J, Rakshit A, Ogireddy SD, Singh S, Gupta C, Chandrakala J. Microbiome as a key player in sustainable agriculture and human health. Front Soil Sci. 2022;2:821589. doi:10.3389/fsoil.2022.821589.
  • Aznar-Sánchez JA, Piquer-Rodríguez M, Velasco-Muñoz JF, Manzano-Agugliaro F. Worldwide research trends on sustainable land use in agriculture. Land Use Policy. 2019;87:104069. doi:10.1016/j.landusepol.2019.104069.
  • Calicioglu O, Flammini A, Bracco S, Bellù L, Sims R. The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainab (Switzerland). 2019;11(1):222. doi:10.3390/su11010222.
  • Kumar A, Patel JS, Meena VS, Srivastava R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. In: Biocatalysis and agricultural biotechnology. Vol. 20. Elsevier; 2019. p. 101271. doi:10.1016/j.bcab.2019.101271.
  • Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK. Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal Agric Biotechnol. 2019;21:101326. doi:10.1016/J.BCAB.2019.101326.
  • Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. In: Frontiers in microbiology. Vol. 12. Frontiers Media S.A; 2021. p. 743512. doi:10.3389/fmicb.2021.743512.
  • Lyu D, Msimbira LA, Nazari M, Antar M, Pagé A, Shah A, Monjezi N, Zajonc J, Tanney CAS, Backer R, et al. The coevolution of plants and microbes underpins sustainable agriculture. Microorgan. 2021;9(5):1036. doi:10.3390/MICROORGANISMS9051036.
  • Malgioglio G, Rizzo GF, Nigro S, du Prey VL, Herforth-Rahmé J, Catara V, Branca F. Plant-microbe interaction in sustainable agriculture: the factors that may influence the efficacy of PGPM application. Sustainab. 2022;14(4):2253. doi:10.3390/SU14042253.
  • Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. In: Microbiological research. Vol. 252. Urban & Fischer; 2021. p. 126842. doi:10.1016/j.micres.2021.126842.
  • Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biology BioMed Central. 2019;17(1):1–17. doi:10.1186/s12915-019-0710-0.
  • Ibarra-Villarreal A, Villarreal-Delgado L, Parra-Cota MF, Yepez FI, Guzmán EA, Gutierrez-Coronado MA, Valdez LC, Saint-Pierre C, de Los Santos-Villalobos S. Effect of a native bacterial consortium on growth, yield, and grain quality of durum wheat (Triticum turgidum L. subsp. durum) under different nitrogen rates in the Yaqui valley, Mexico. Plant Signal Behav. 2023;18(1). doi:10.1080/15592324.2023.2219837.
  • Naamala J, Smith DL. Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy. 2020;10(8):1179. doi:10.3390/AGRONOMY10081179.
  • Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions. J Adv Res. 2022;40(December):45–58. doi:10.1016/j.jare.2021.11.020.
  • Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25–41. doi:10.1016/j.tplants.2017.09.003.
  • Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Bhojiya AA, Jain D, Chaubey G, Dwivedi P, Sharma B, Minkina T. Root exudates: mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. In: Frontiers in microbiology. Vol. 13. Frontiers Media S.A; 2022. p. 916488. doi:10.3389/fmicb.2022.916488.
  • Santoyo G, Guzmán-Guzmán P, Parra-Cota FI, de Los Santos-Villalobos S, Del Orozco-Mosqueda MC, Glick BR. Plant growth stimulation by microbial consortia. Agronomy. 2021;11(2):219. doi:10.3390/agronomy11020219.
  • Wahid F, Sharif M, Ali A, Fahad S, Adnan M, Noor M, Mian IA, Khan IA, Alam M, Saeed M, et al. Plant-microbes interactions and functions in changing climate. InEnvironment, climate, plant and vegetation growth. Springer International Publishing; 2020pp. 397–419. doi:10.1007/978-3-030-49732-3_16.
  • Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11(4):343–348. doi:10.1038/s41558-021-00989-9.
  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17(9):569–586. Nature Publishing Group. doi:10.1038/s41579-019-0222-5.
  • Cogato A, Meggio F, Migliorati MDA, Marinello F. Extreme weather events in agriculture: a systematic review. Sustainabil. 2019;11(9):2547. doi:10.3390/SU11092547.
  • Li K, Pan J, Xiong W, Xie W, Ali T. The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade. Sci Rep. 2022;12(1):1–14. doi:10.1038/s41598-022-22228-7.
  • Iquebal MA, Jagannadham J, Jaiswal S, Prabha R, Rai A, Kumar D. Potential use of microbial community genomes in various dimensions of agriculture productivity and its management: a review. In: Frontiers in microbiology. Vol. 13. Frontiers Media S.A; 2022. p. 708335. doi:10.3389/fmicb.2022.708335.
  • de Los Santos-Villalobos S, Díaz-Rodríguez AM, Ávila-Mascareño MF, Martínez-Vidales AD, Parra-Cota FI. COLMENA: a culture collection of native microorganisms for harnessing the agro-biotechnological potential in soils and contributing to food security. Diversity. 2021;13(8):337. Multidisciplinary Digital Publishing Institute. doi:10.3390/d13080337.