1,382
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana

, , , , &
Article: 2300228 | Received 27 Nov 2023, Accepted 23 Dec 2023, Published online: 02 Jan 2024

References

  • Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem. 2021;158:76–7. doi:10.1016/j.plaphy.2020.11.019.
  • Kusano M, Fukushima A, Redestig H, Saito K. Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot. 2011;62(4):1439–1453. doi:10.1093/jxb/erq417.
  • Anas M, Liao F, Verma KK, Sarwar MA, Mahmood A, Chen ZL, Li Q, Zeng XP, Liu Y, Li YR, et al. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res. 2020;53(1):47. doi:10.1186/s40659-020-00312-4.
  • Ezin V, La Pena RD, Ahanchede A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz J Plant Physiol. 2010;22(2):131–142. doi:10.1590/S1677-04202010000200007.
  • Kim W, Iizumi T, Hosokawa N, Tanoue M, Hirabayashi Y. Flood impacts on global crop production: advances and limitations. Environ Res Lett. 2023;18(5):54007. doi:10.1088/1748-9326/accd85.
  • Voesenek LACJ, Bailey-Serres J. Flood adaptive traits and processes: an overview. New Phytol. 2015;206(1):57–73. doi:10.1111/nph.13209.
  • Diab H, Limami AM. Reconfiguration of N metabolism upon hypoxia stress and recovery: roles of alanine aminotransferase (AlaAT) and glutamate dehydrogenase (GDH). Plants (Basel). 2016;5(2):25. doi:10.3390/plants5020025.
  • Drew MC. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol. 1997;48(1):223–250. doi:10.1146/annurev.arplant.48.1.223.
  • Mustroph A, Zanetti ME, Jang CJH, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in arabidopsis. Proc Natl Acad Sci U S A. 2009;106(44):18843–18848. doi:10.1073/pnas.0906131106.
  • Giuntoli B, Lee SC, Licausi F, Kosmacz M, Oosumi T, van Dongen JT, Bailey-Serres J, Perata P. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in arabidopsis. PLoS Biol. 2014;12(9):e1001950. doi:10.1371/journal.pbio.1001950.
  • Ismond KP, Dolferus R, De Pauw M, Dennis ES, Good AG. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 2003;132(3):1292–1302. doi:10.1104/pp.103.022244.
  • Hartman S, van Dongen N, Renneberg DMHJ, Welschen-Evertman RAM, Kociemba J, Sasidharan R, Voesenek LACJ. Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants (Basel). 2020;9(8):1022. doi:10.3390/plants9081022.
  • Liu Z, Hartman S, van Veen H, Zhang H, Leeggangers HACF, Martopawiro S, Bosman F, de Deugd F, Su P, Hummel M, et al. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiol. 2022;190(2):1365–1383. doi:10.1093/plphys/kiac245.
  • Hartman S. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. 2019;10(1):4020. doi:10.1038/s41467-019-12045-4.
  • Gibbs DJ, Lee SC, Md Isa N, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 2011;479(7373):415–418. doi:10.1038/nature10534.
  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LACJ, Perata P, van Dongen JT. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature. 2011;479(7373):419–422. doi:10.1038/nature10536.
  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134(4):1683–1696. doi:10.1104/pp.103.033431.
  • Limami AM, Diab H, Lothier J. Nitrogen metabolism in plants under low oxygen stress. Planta. 2014;239(3):531–541. doi:10.1007/s00425-013-2015-9.
  • Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT. Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol. 2011;190(2):472–487. doi:10.1111/j.1469-8137.2010.03589.x.
  • Oliveira HC, Sodek L. Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments. Amino Acids. 2013;44(2):743–755. doi:10.1007/s00726-012-1399-3.
  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of lotus japonicus. Plant Physiol. 2010;152(3):1501–1513. doi:10.1104/pp.109.150045.
  • Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot. 2014;65(1):185–200. doi:10.1093/jxb/ert358.
  • Trevisan S, Manoli A, Quaggiotti S. NO signaling is a key component of the root growth response to nitrate in zea mays L. Plant Signal Behav. 2014;9(3):e28290. doi:10.4161/psb.28290.
  • Liu B, Rennenberg H, Kreuzwieser J. Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings. Planta. 2015;241(3):579–89. doi:10.1007/s00425-014-2198-8.
  • Norén H, Svensson P, Andersson B. A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol Plant. 2004;121(3):343–348. doi:10.1111/j.0031-9317.2004.00350.x.
  • Balazadeh S, Schildhauer J, Araújo WL, Munné-Bosch S, Fernie AR, Proost S, Humbeck K, Mueller-Roeber B. Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences. J Exp Bot. 2014;65(14):3975–3992. doi:10.1093/jxb/eru119.
  • Arteca RN, Arteca JM. A novel method for growing Arabidopsis thaliana plantshydroponically. Physiol Plant. 2000;108(2):188–193. doi:10.1034/j.1399-3054.2000.108002188.x.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2010;3(6):1101–1108. PMID: 18546601. doi: 10.1038/nprot.2008.73.
  • Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B. QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform. 2008;9(1):465. doi:10.1186/1471-2105-9-465.
  • Park BS, Song JT, Seo HS. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun. 2011;2(1):400. doi:10.1038/ncomms1408.
  • Zheng D, Han X, An YI, Guo H, Xia X, Yin W. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in arabidopsis. Plant, Cell & Environ. 2013;36(7):1328–1337. doi:10.1111/pce.12062.
  • Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 2010;153(2):757–772. doi:10.1104/pp.110.155077.
  • Safavi-Rizi V, Herde M, Stöhr C. RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Sci Rep. 2020;10(1):1692. doi:10.1038/s41598-020-57884-0.
  • Giuntoli B, Licausi F, van Veen H, Perata P. Functional balancing of the hypoxia regulators RAP2.12 and HRA1 takes place in vivo in Arabidopsis thaliana plants. Front Plant Sci. 2017;8:591. doi:10.3389/fpls.2017.00591.
  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 2010;62(2):302–315. doi:10.1111/j.1365-313X.2010.04149.x.
  • Wang R, Xing X, Crawford N. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. Plant Physiol. 2007;145(4):1735–1745. doi:10.1104/pp.107.108944.
  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD. Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J. 2003;35(6):763–770. doi:10.1046/j.1365-313X.2003.01846.x.
  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LACJ, Harren FJM, Cristescu SM, Møller IM, Mur LAJ. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot. 2012;63(15):5581–5591. doi:10.1093/jxb/ers210.
  • Igamberdiev AU. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot. 2004;55(408):2473–2482. doi:10.1093/jxb/erh272.
  • Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES. Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2002;99(26):17197–17202. doi:10.1073/pnas.212648799.
  • Mira MM, Hill RD, Stasolla C. Phytoglobins improve hypoxic root growth by alleviating apical meristem cell death. Plant Physiol. 2016;172(3):2044–2056. doi:10.1104/pp.16.01150.