1,140
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Endogenous cAMP elevation in Brassica napus causes changes in phytohormone levels

, , , , , , , & ORCID Icon show all
Article: 2310963 | Received 07 Dec 2023, Accepted 22 Jan 2024, Published online: 05 Feb 2024

References

  • Sutherland EW. Studies on the mechanism of hormone action. Sci. 1972;177(4047):401–15. doi:10.1126/science.177.4047.401.
  • Botsford JL, Harman JG. Cyclic AMP in prokaryotes. Microbiol Rev. 1992;56(1):100–122. doi:10.1128/mr.56.1.100-122.1992.
  • Bahn YS, Molenda M, Staab JF, Lyman CA, Gordon LJ, Sundstrom P. Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. Eukaryot Cell. 2007;6(12):2376–2390. doi:10.1128/EC.00318-07.
  • Biswas A, Bhattacharya A, Das PK. Role of cAMP signaling in the survival and infectivity of the protozoan parasite, leishmania donovani. Mol Biol Int. 2011;2011:782971. doi:10.4061/2011/782971.
  • Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol. 2006;362(4):623–639. doi:10.1016/j.jmb.2006.07.045.
  • Assmann SM. Cyclic AMP as a second messenger in higher plants: status and future prospects. Plant Physiol. 1995;108:885–889. doi:10.1104/pp.108.3.885.
  • Gehring C. Adenyl cyclases and cAMP in plant signaling – past and present. Cell Commun Signal. 2010;8(1):15. doi:10.1186/1478-811X-8-15.
  • Gehring C, Turek IS. Cyclic nucleotide monophosphates and their cyclases in plant signaling. Front Plant Sci. 2017;8:1704. doi:10.3389/fpls.2017.01704.
  • Blanco E, Fortunato S, Viggiano L, de Pinto MC. Cyclic AMP: a polyhedral signalling molecule in plants. Int J Mol Sci. 2020;21(14):4862. doi:10.3390/ijms21144862.
  • Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular targets and biological functions of cAMP signaling in Arabidopsis. Biomolecules. 2021;11(5):688. doi:10.3390/biom11050688.
  • Sassone–Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol. 2012;4(12):a011148. doi:10.1101/cshperspect.a011148.
  • Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc. 2013;88(3):645–668. doi:10.1111/brv.12020.
  • Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases — similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta. 2014;1842(12):2535–2547. doi:10.1016/j.bbadis.2014.08.012.
  • Ruzvidzo O, Gehring C, Wong A. New perspectives on plant adenylyl cyclases. Front Mol Biosci. 2019;6:136. doi:10.3389/fmolb.2019.00136.
  • Jeffery CJ. Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond B Biol Sci. 2018;373:20160523. doi:10.1098/rstb.2016.0523.
  • Huberts DH, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta. 2010;1803(4):520–525. doi:10.1016/j.bbamcr.2010.01.022.
  • Al-Younis I, Wong A, Lemtiri-Chlieh F, Schmockel S, Tester M, Gehring C, Donaldson L. The Arabidopsis thaliana K+-uptake permease 5 (AtKUP5) contains a functional cytosolic adenylate cyclase essential for K+ transport. Front Plant Sci. 2018;9:1645. doi:10.3389/fpls.2018.01645.
  • Al-Younis I, Wong A, Gehring C. The Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Lett. 2015;589(24PartB):3848–3852. doi:10.1016/j.febslet.2015.11.038.
  • Bianchet C, Wong A, Quaglia M, Alqurashi M, Gehring C, Ntoukakis V, Pasqualini S. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. J Plant Physiol. 2019;232:12–22. doi:10.1016/j.jplph.2018.10.025.
  • Chatukuta P, Dikobe TB, Kawadza DT, Sehlabane KS, Takundwa MM, Wong A, Gehring C, Ruzvidzo O. An Arabidopsis clathrin assembly protein with a predicted role in plant defense can function as an adenylate cyclase. Biomolecules. 2018;8(2):15. doi:10.3390/biom8020015.
  • Ruzvidzo O, Dikobe BT, Kawadza DT, Mabadahanye GH, Chatukuta P, Kwezi L. Recombinant expression and functional testing of candidate adenylate cyclase domains. Methods Mol Biol. 2013;1016:13–25.
  • Yang H, Zhao Y, Chen N, Liu Y, Yang S, Du H, Wang W, Wu J, Tai F, Chen F. et al. A new adenylyl cyclase, putative disease–resistance RPP13–like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. J Exp Bot. 2021;72(2):283–301. doi:10.1093/jxb/eraa431.
  • Uematsu K, Fukui Y. Role and regulation of cAMP in seed germination of phacelia tanacetifolia. Plant Physiol Biochem. 2008;46(8–9):768–774. doi:10.1016/j.plaphy.2007.10.015.
  • Hall KA, Galsky AG. The action of cyclic–AMP on GA3 controlled responses IV. Characteristics of the promotion of seed germination in Lactuca sativa variety ‘Spartan lake’ by gibberellic acid and cyclic 3’,5‘–adenosine monophosphate. Plant Cell Physiol. 1973;14:565–571.
  • Salomon D, Mascarenhas JP. Auxin–induced synthesis of cyclic 3‘, 5’-adenosine monophosphate in Avena coleoptiles. Life Sci. 1971;II(10):879–885. doi:10.1016/0024-3205(71)90200-1.
  • Truelsen TA, Delaughe E, Verbeek–Wyndaele R. Cyclic AMP induced growth promotion in sunflower callus tissue. Arch Int de Physiologie et de Biochimie. 1974;82(1):109–114. doi:10.3109/13813457409070458.
  • Wood HN, Braun AC. 8-bromoadenosine 3′: 5′-cyclic monophosphate as a promoter of cell division in excised tobacco pith parenchyma tissue. Proc Natl Acad Sci U S A. 1973;70(2):447–450. doi:10.1073/pnas.70.2.447.
  • Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, Zou M, Del Genio CI, Kubeš MF, Napier R, Jaworski K. et al. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022;611(7934):133–138. doi:10.1038/s41586-022-05369-7.
  • Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126(3):467–475. doi:10.1016/j.cell.2006.05.050.
  • Wu C, Tang S, Li G, Wang S, Fahad S, Ding Y. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. PeerJ. 2019;7:e7792. doi:10.7717/peerj.7792.
  • Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Diaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H. et al. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci. 2021;12:799318. doi:10.3389/fpls.2021.799318.
  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LP. The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep. 2017;36(7):1009–1025. doi:10.1007/s00299-017-2119-y.
  • Llanes A, Andrade A, Alemano S, Luna V. Alterations of endogenous hormonal levels in plants under drought and salinity. Am J Plant Sci. 2016;7(9):1357–1371. doi:10.4236/ajps.2016.79129.
  • Chen X, Qin S, Li C, Wu Q, Jiang C, Yang J, Guo X, Ou C. Differential gene expressions and phytohormone changes altered Lonicera japonica quality after plant introduction. Pharmacogn Mag. 2019;15(60):18–23. doi:10.4103/pm.pm_317_18.
  • Zhang K, He J, Liu L, Xie R, Qiu L, Li X, Yuan W, Chen K, Yin Y, Kyaw MMM. et al. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus. Plant Methods. 2020;16(1):43. doi:10.1186/s13007-020-00585-6.
  • Wang Z, Chen Y, Fang H, Shi H, Chen K, Zhang Z, Tan X. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol Genet Genomics. 2014;289(5):1023–1035. doi:10.1007/s00438-014-0853-1.
  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–915. doi:10.1038/s41587-019-0201-4.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21(19):3787–3793. doi:10.1093/bioinformatics/bti430.
  • Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. doi:10.1186/gb-2010-11-2-r14.
  • Aoyama T, Chua NH. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant Journal. 1997;11(3):605–612. doi:10.1046/j.1365-313X.1997.11030605.x.
  • Zuo J, Chua NH. Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol. 2000;11(2):146–151. doi:10.1016/S0958-1669(00)00073-2.
  • Sabetta W, Vandelle E, Locato V, Costa A, Cimini S, Bittencourt Moura A, Luoni L, Graf A, Viggiano L, De Gara L. et al. Genetic buffering of cyclic AMP in Arabidopsis thaliana compromises the plant immune response triggered by an avirulent strain of Pseudomonas syringae pv. tomato. Plant J. 2019;98(4):590–606. doi:10.1111/tpj.14275.
  • Beavo JA, Brunton LL. Cyclic nucleotide research — still expanding after half a century. Nat Rev Mol Cell Biol. 2002;3(9):710–717. doi:10.1038/nrm911.
  • Schena M, Lloyd AM, Davis RW. A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci U S A. 1991;88(23):10421–10425. doi:10.1073/pnas.88.23.10421.
  • McNellis TW, Mudgett MB, Li K, Aoyama T, Horvath D, Chua NH, Staskawicz BJ. Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant Journal. 1998;14(2):247–257. doi:10.1046/j.1365-313X.1998.00106.x.
  • Brutting C, Schafer M, Vankova R, Gase K, Baldwin IT, Meldau S. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata. Plant Journal. 2017;89(1):15–30. doi:10.1111/tpj.13316.
  • Xu Y, Prunet N, Gan ES, Wang Y, Stewart D, Wellmer F, Huang J, Yamaguchi N, Tatsumi Y, Kojima M. et al. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J. 2018;37(11):e97499. doi:10.15252/embj.201797499.
  • Lee DJ, Park JW, Lee HW, Kim J. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot. 2009;60(13):3935–3957. doi:10.1093/jxb/erp230.
  • Park JY, Kim HJ, Kim J. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant Journal. 2002;32(5):669–683. doi:10.1046/j.1365-313X.2002.01459.x.
  • Amirsadeghi S, McDonald AE, Vanlerberghe GC. A glucocorticoid-inducible gene expression system can cause growth defects in tobacco. Planta. 2007;226(2):453–463. doi:10.1007/s00425-007-0495-1.
  • Kang HG, Fang Y, Singh KB. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. Plant Journal. 1999;20(1):127–133. doi:10.1046/j.1365-313X.1999.00575.x.
  • Azhar S, Murti CR. Effect of indole-3-acetic acid on the synthesis of cyclic 3′–5′ adenosine phosphate by Bengal gram seeds. Biochem Biophys Res Commun. 1971;43(1):58–64. doi:10.1016/S0006-291X(71)80085-2.
  • Kamisaka S, Masuda Y. Stimulation of auxin-induced cell expansion in plant tissue by cyclic 3’,5‘–adenosine monophosphate. Naturwissenschaften. 1970;57(11):546. doi:10.1007/BF00625331.
  • Chakraborty S, Toyota M, Moeder W, Chin K, Fortuna A, Champigny M, Vanneste S, Gilroy S, Beeckman T, Nambara E. et al. CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiol. 2021;187(3):1690–1703. doi:10.1093/plphys/kiab332.
  • Zhao J, Peng S, Cui H, Li P, Li T, Liu L, Zhang H, Tian Z, Shang H, Xu R. et al. Dynamic expression, differential regulation and functional diversity of the CNGC family genes in cotton. Int J Mol Sci. 2022;23(4):2041. doi:10.3390/ijms23042041.
  • Duszyn M, Swiezawska B, Szmidt–Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signalling – current knowledge and perspectives. J Plant Physiol. 2019;241:153035. doi:10.1016/j.jplph.2019.153035.
  • Parker T, Wang KW, Manning D, Dart C. Soluble adenylyl cyclase links Ca2+ entry to Ca2+/cAMP-response element binding protein (CREB) activation in vascular smooth muscle. Sci Rep. 2019;9(1):7317. doi:10.1038/s41598-019-43821-3.
  • Grant MR, Jones JD. Hormone (dis)harmony moulds plant health and disease. Sci. 2009;324(5928):750–752. doi:10.1126/science.1173771.
  • Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, Ishii T, Soeno K, Shimada Y. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep. 2015;34(8):1343–1352. doi:10.1007/s00299-015-1791-z.
  • Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q. et al. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. J Exp Bot. 2016;67(3):809–819. doi:10.1093/jxb/erv500.
  • Jin X-C, Wu W-H. Involvement of cyclic AMP in ABA- and Ca2+-mediated signal transduction of stomatal regulation in Vicia faba. Plant Cell Physiol. 1999;40(11):1127–1133. doi:10.1093/oxfordjournals.pcp.a029497.
  • Zhao Y, Liu Y, Ji X, Sun J, Lv S, Yang H, Zhao X, Hu X. Physiological and proteomic analyses reveal cAMP-regulated key factors in maize root tolerance to heat stress in maize root tolerance to heat stress. Food Energy Secur. 2021;10(4):e309. doi:10.1002/fes3.309.
  • Jiang J, Fan LW, Wu WH. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res. 2005;15(8):585–592. doi:10.1038/sj.cr.7290328.
  • Altmann M, Altmann S, Rodriguez PA, Weller B, Elorduy Vergara L, Palme J, Marín-de la Rosa N, Sauer M, Wenig M, Villaécija-Aguilar JA. et al. Extensive signal integration by the phytohormone protein network. Nature. 2020;583(7815):271–276. doi:10.1038/s41586-020-2460-0.
  • Yue X, Li XG, Gao XQ, Zhao XY, Dong YX, Zhou C. The Arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes. BMC Syst Biol. 2016;10(1):87. doi:10.1186/s12918-016-0333-9.
  • Mangat BS, Janjua S. Cyclic nucleotides and in vitro plant cultures: I. Induction of organogenesis in tobacco (Nicotiana tabacum) callus cultures. J Exp Biol. 1987;38(12):2059–2067. doi:10.1093/jxb/38.12.2059.
  • Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot. 2012;63(8):2853–2872. doi:10.1093/jxb/ers091.
  • Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J. et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci U S A. 2015;112(15):4821–4826. doi:10.1073/pnas.1503998112.
  • Liu H, Timko MP. Jasmonic acid signaling and molecular crosstalk with other phytohormones. Int J Mol Sci. 2021;22(6):2914. doi:10.3390/ijms22062914.
  • Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. Int J Mol Sci. 2022;23(1):510. doi:10.3390/ijms23010510.
  • Di DW, Zhang C, Luo P, An CW, Guo GQ. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul. 2016;78(3):275–285. doi:10.1007/s10725-015-0103-5.
  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell. 2001;13(1):101–111. doi:10.1105/tpc.13.1.101.
  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci U S A. 2000;97(26):14819–14824. doi:10.1073/pnas.260502697.
  • Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, Pasternak T, Palme K, Mironova VV. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol. 2016;16(Suppl 1):5. doi:10.1186/s12870-015-0685-0.
  • Paque S, Weijers D. Q&A: Auxin: the plant molecule that influences almost anything. BMC Biol. 2016;14(1):67. doi:10.1186/s12915-016-0291-0.
  • Wani SH, Kumar V, Shriram V, Sah SK. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162–176. doi:10.1016/j.cj.2016.01.010.
  • Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P. et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 2018;212–213:29–37. doi:10.1016/j.micres.2018.04.008.
  • Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol. 1992;19(4):689–692. doi:10.1007/BF00026794.
  • Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1–1 mutant. J Cell Sci. 2002;115(Pt 24):4891–4900. doi:10.1242/jcs.00175.
  • Stepanova AN, Robertson–Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133(1):177–191. doi:10.1016/j.cell.2008.01.047.
  • Nguyen TC, Obermeier C, Friedt W, Abrams SR, Snowdon RJ. Disruption of germination and seedling development in Brassica napus by mutations causing severe seed hormonal imbalance. Front Plant Sci. 2016;7:322. doi:10.3389/fpls.2016.00322.
  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses front plant sci. Front Plant Sci. 2019;10:1349. doi:10.3389/fpls.2019.01349.
  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He Z-H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci U S A. 2013;110(38):15485–15490. doi:10.1073/pnas.1304651110.
  • Boter M, Calleja–Cabrera J, Carrera–Castaño G, Wagner G, Hatzig SV, Snowdon RJ, Legoahec L, Bianchetti G, Bouchereau A, Nesi N. et al. An integrative approach to analyze seed germination in Brassica napus. Front Plant Sci. 2019;10:1342. doi:10.3389/fpls.2019.01342.
  • Liu L, Liu F, Chu J, Yi X, Fan W, Tang T, Chen G, Guo Q, Zhao X. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC Plant Biol. 2019;19(1):264. doi:10.1186/s12870-019-1866-z.
  • Song JB, Shu XX, Shen Q, Li BW, Song J, Yang ZM, Raman H. Altered fruit and seed development of transgenic rapeseed (Brassica napus) over-expressing MicroRNA394. PloS ONE. 2015;10(5):e0125427. doi:10.1371/journal.pone.0125427.
  • Robert HS. Molecular communication for coordinated seed and fruit development: what can we learn from auxin and sugars? Int J Mol Sci. 2019;20(4):936. doi:10.3390/ijms20040936.
  • Tabeta H, Watanabe S, Fukuda K, Gunji S, Asaoka M, Hirai MY, Seo M, Tsukaya H, Ferjani A. An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon. PloS Genet. 2021;17(8):e1009674. doi:10.1371/journal.pgen.1009674.
  • Bak S, Feyereisen R. The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 2001;127(1):108–118. doi:10.1104/pp.127.1.108.
  • Petrásek J, Friml J. Auxin transport routes in plant development. Development. 2009;136(16):2675–2688. doi:10.1242/dev.030353.
  • Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 2014;55(6):1072–1079. doi:10.1093/pcp/pcu039.
  • Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN. Local auxin biosynthesis is a key regulator of plant development. Dev Cell. 2018;47(3):306–318.e5. doi:10.1016/j.devcel.2018.09.022.
  • Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006;7(11):847–859. doi:10.1038/nrm2020.
  • Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS, Yu H. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PloS Genet. 2013;9(6):e1003564. doi:10.1371/journal.pgen.1003564.
  • Deb Y, Marti D, Frenz M, Kuhlemeier C, Reinhardt D. Phyllotaxis involves auxin drainage through leaf primordia. Development. 2015;142(11):1992–2001. doi:10.1242/dev.121244.
  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics. 2008;279(5):499–507. doi:10.1007/s00438-008-0328-3.
  • Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant Journal. 2013;74(4):626–637. doi:10.1111/tpj.12152.
  • Zhao B, Liu Q, Wang B, Yuan F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J Agric Food Chem. 2021;69(12):3566–3584. doi:10.1021/acs.jafc.0c07908.
  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol. 2017;8:2104. doi:10.3389/fmicb.2017.02104.
  • Irving HR, Cahill DM, Gehring C. Moonlighting proteins and their role in the control of signaling microenvironments, as exemplified by cGMP and phytosulfokine receptor 1 (PSKR1). Front Plant Sci. 2018;9:415. doi:10.3389/fpls.2018.00415.