627
Views
0
CrossRef citations to date
0
Altmetric
Method

Plant ultrasound detection: a cost-effective method for identifying plant ultrasonic emissions

ORCID Icon, & ORCID Icon
Article: 2310974 | Received 06 Nov 2023, Accepted 22 Jan 2024, Published online: 12 Feb 2024

References

  • Milburn JA, Johnson RPC. The conduction of sap: II. Detection of vibrations produced by sap cavitation in ricinus xylem. Planta. 1966;69(1):43–10. doi:10.1007/BF00380209.
  • Gagliano M. Green symphonies: a call for studies on acoustic communication in 510 plants. Behav Ecol. 2012;24(4):789–796. doi:10.1093/beheco/ars206.
  • Khait I, Lewin-Epstein O, Sharon R, Sade N, Yovel Y, Hadany L. Sounds emitted by plants under stress are airborne and informative. Cell. 2023;186(7):1328–1336.e10. doi:10.1016/j.cell.2023.03.009.
  • Kikuta SB, Lo Gullo MA, Nardini A, Richter H, Salleo S. Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees. Plant, Cell & Environ. 1997;20(11):1381–1390. doi:10.1046/j.1365-3040.1997.d01-34.x.
  • Ritman KT, Milburn JA. Acoustic emissions from plants: ultrasonic and audible compared. J Exp Bot. 1988;39(206):1237–1248. doi:10.1093/jxb/39.9.1237.
  • Tyree MT, Dixon MA. Cavitation events in Thuja occidentalis L.? - ultrasonic acoustic emissions from the sapwood can be measured. Plant Physiol. 1983;72(4):1094–1099. doi:10.1104/pp.72.4.1094.
  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT. Spring filling of xylem vessels in wild grapevine. Plant Physiol. 1987;83(2):414–417. doi:10.1104/pp.83.2.414.
  • Mayr S, Zublasing V. Ultrasonic emissions from conifer xylem exposed to repeated freezing. J Plant Physiol. 2010;167(1):34–40. doi:10.1016/j.jplph.2009.07.010.
  • McElrone AJ, Jackson S, Habdas P. Hydraulic disruption and passive migration by a bacterial pathogen in oak tree xylem. J Exp Bot. 2008;59(10):2649–2657. doi:10.1093/jxb/ern124.
  • Sabella E, Aprile A, Genga A, Siciliano T, Nutricati E, Nicoli F, Vergine M, Negro C, De Bellis L, Luvisi A. Xylem cavitation susceptibility and refilling mechanisms in olive trees infected by Xylella fastidiosa. Sci Rep. 2019;9(1):9602. doi:10.1038/s41598-019-46092-0.
  • Yazaki K, Takanashi T, Kanzaki N, Komatsu M, Levia DF, Kabeya D, Tobita H, Kitao M, Ishida A. Pine wilt disease causes cavitation around the resin canals and irrecoverable xylem conduit dysfunction. J Exp Bot. 2018;69(3):589–602. doi:10.1093/jxb/erx417.
  • Laschimke R, Burger M, Vallen H. Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J Plant Physiol. 2006;163(10):996–1007. doi:10.1016/j.jplph.2006.05.004.
  • Schenk HJ, Steppe K, Jansen S. Nanobubbles: a new paradigm for air-seeding in xylem. Trends Plant Sci. 2015;20(4):199–205. doi:10.1016/j.tplants.2015.01.008.
  • Mayr S, Rosner S. Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions. Tree Physiol. 2011;31(1):59–67. doi:10.1093/treephys/tpq099.
  • Dutta S, Chen Z, Kaiser E, Matamoros PM, Steeneken PG, Verbiest GJ. Ultrasound pulse emission spectroscopy method to characterize xylem conduits in plant stems. Research (Washington DC). 2022. doi:10.34133/2022/9790438.
  • Hölttä T, Vesala T, Nikinmaa E, Perämäki M, Siivola E, Mencuccini M. Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism. Tree Physiol. 2005;25(2):237–243. doi:10.1093/treephys/25.2.237.
  • Jackson G, Grace J. Cavitation and water transport in trees. Endeavour. 1994;18(2):50–54. doi:10.1016/0160-9327(94)90062-0.
  • Oletic D, Rosner S, Zovko M, Bilas V. Time-frequency features of grapevine’s xylem acoustic emissions for detection of drought stress. Comput Electron Agric. 2020;178:105797. doi:10.1016/j.compag.2020.105797.
  • Rosner S. Acoustic emission related to drought stress response of four deciduous broad-leaved woody species. J Acoust Emiss. 2012;30:11–20.
  • Sause MGR. Investigation of pencil-lead breaks as acoustic emission sources. J Acoust Emiss. 2011;29:184–196.
  • Tyree MT, Fiscus EL, Wullschleger SD, Dixon MA. Detection of xylem cavitation in corn under field conditions. Plant Physiol. 1986;82(2):597–599. doi:10.1104/pp.82.2.597.
  • Sandford AP, Grace J. The measurement and interpretation of ultrasound from woody stems. J Exp Bot. 1985;36(163):298–311. doi:10.1093/jxb/36.2.298.
  • Ponomarenko A, Vincent O, Pietriga A, Cochard HÉB, Marmottant P. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood. J R Soc Interface. 2014;11(99):20140480. doi:10.1098/rsif.2014.0480.
  • Vergeynst LL, Sause MGR, Hamstad MA, Steppe K. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor. Front Plant Sci. 2015;6:494. doi:10.3389/fpls.2015.00494.
  • Philips N, Remedios SW, Nikolaidou A, Baracskai Z, Adamatzky A. No ultrasounds detected from fungi when dehydrated. Ultrasonics. 2023;135:107111. doi:10.1016/j.ultras.2023.107111.