680
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Metal-tolerant morganella morganii isolates can potentially mediate nickel stress tolerance in Arabidopsis by upregulating antioxidative enzyme activities

, , , , , , , & show all
Article: 2318513 | Received 28 Nov 2023, Accepted 08 Feb 2024, Published online: 25 Mar 2024

References

  • Akhtar N, Syakir Ishak MI, Bhawani SA, Umar K. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water. 2021;13(19):2660. doi:10.3390/w13192660.
  • Khalef RN, Hassan AI, Saleh HM. Heavy Metal’s Environmental Impact. In: Saleh H, Hassan AI, editors. Environmental impact and remediation of heavy metal. Vol. 1. London, United Kingdom: IntechOpen; 2022. p. 3–12.
  • Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi:10.1016/j.heliyon.2020.e04691.
  • Bhalerao SA, Sharma AS, Poojari AC. Toxicity of nickel in plants. Int J Pure Appl Biosci. 2015;3:345–355.
  • Mishra S, Bharagava RN Yadav A, Zainith S Chowdhary P. Heavy metal contamination: an alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R, editors. Environmental biotechnology: for sustainable future. Singapore: Springer Nature; 2019. p. 103–125.
  • Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M. et al. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res. 2019;26:12673–12688. doi:10.1007/s11356-019-04892-x
  • Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, Atif S, Hua L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review. Chemosphere. 2020;246:125823. doi:10.1016/j.chemosphere.2020.125823
  • Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017;14(12):1504. doi:10.3390/ijerph14121504.
  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. MicrobiolRes. 2020;238:126486. doi:10.1016/j.micres.2020.126486
  • Nazli F, Mustafa A, Ahmad M, Hussain A, Jamil M, Wang X. et al. A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability. 2020;12:9056. doi:10.3390/su12219056
  • Akhtar MJ, Ullah S, Ahmad I, Rauf A, Nadeem SM, Khan MY, Hussain S, Bulgariue L et al. Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere. 2018;190:234–242. doi:10.1016/j.chemosphere.2017.09.136
  • der Lelie D V, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M et al. The role of bacteria in the phytoremediation of heavy metals. In: T Norman, SB Gary, editors. Phytoremediation of contaminated soil and water. Boca Raton: CRC Press; 2020. pp. 265–281.
  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98(12):2243–57. doi:10.1016/j.biortech.2005.12.006.
  • Mishra R, Grover T, Gulati P, Mohanty A. Rhizosphere engineering: an effective approach for sustainable modern agriculture. In: Verma A, Saini JK, Hesham AL, Singh HB, editors. Phytomicrobiome interactions and sustainable agriculture. India: Wiley-Blackwell;2021. pp. 91–117.
  • Sayyed R, Seifi S, Patel P, Shaikh S, Jadhav H, Enshasy HE. Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environ Sustainability. 2019;2(2):117–24. doi:10.1007/s42398-019-00070-4.
  • Ajmal AW, Saroosh S, Mulk S, Hassan MN, Yasmin H, Jabeen Z, Nosheen A, Shah SMU, Naz R, Hasnain Z. et al. Bacteria isolated from wastewater irrigated agricultural soils adapt to heavy metal toxicity while maintaining their plant growth promoting traits. Sustainability. 2021;13(14):7792. doi:10.3390/su13147792.
  • Oladoye PO, Olowe OM, Asemoloye MD. Phytoremediation technology and food security impacts of heavy metal contaminated soils: a review of literature. Chemosphere. 2022;288:132555. doi:10.1016/j.chemosphere.2021.132555
  • Sun L, Zhang X, Ouyang W, Yang E, Cao Y, Sun R. Lowered Cd toxicity, uptake and expression of metal transporter genes in maize plant by ACC deaminase-producing bacteria achromobacter sp. J Hazard Mater. 2022;423:127036. doi:10.1016/j.jhazmat.2021.127036
  • Vergnaud L, Chaboud A, Prin Y, Rougier M. Preinfection events in the establishment of Alnus-Frankia symbiosis: development of a spot inoculation technique. Plant Soil. 1985;87(1):67–78. doi:10.1007/BF02277649.
  • Naqqash T, Imran A, Hameed S, Shahid M, Majeed A, Iqbal J. et al. First report of diazotrophic brevundimonas spp. As growth enhancer and root colonizer of potato. Sci Rep. 2020;10:1–14. doi:10.1038/s41598-020-69782-6
  • Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circ Calif Agric Exp Station. 1950;347.
  • Cessna S, Demmig‐Adams B, Adams WW III. Exploring photosynthesis and plant stress using inexpensive chlorophyll fluorometers. J Natural Res Life Sci Edu. 2010;39:22–30. doi:10.4195/jnrlse.2009.0024u
  • Babar M, Rasul S, Aslam K, Abbas R, Manzoor I, Hanif MK. et al. Mining of halo-tolerant plant growth promoting rhizobacteria and their impact on wheat (Triticum aestivum L.) under saline conditions. J King Saud Univ Sci. 2021;33:101372. doi:10.1016/j.jksus.2021.101372
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125(1):189–98. doi:10.1016/0003-9861(68)90654-1.
  • Aebi H. Catalase in vitro. Methods In Enzymology: Elsevier. Vol. 105. 1984; 13:121–126.
  • Chance B, Maehly A. [136] assay of catalases and peroxidases: Methods Biochem Anal. 1955;1:357–424.
  • Dhindsa RS, Plumb‐Dhindsa PL, Reid DM. Leaf senescence and lipid peroxidation: effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol Plant. 1982;56(4):453–7. doi:10.1111/j.1399-3054.1982.tb04539.x.
  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B. et al. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage. 2020;254:109779. doi:10.1016/j.jenvman.2019.109779
  • Khanna K, Kohli SK, Kaur R, Handa N, Bakshi P, Sharma P. et al. Reconnoitering the efficacy of plant growth promoting rhizobacteria in expediting phytoremediation potential of heavy metals. J Plant Growth Regul. 2022:1–29. doi:10.1007/s00344-022-10879-9
  • Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A. et al. Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollution Res. 2015;22:3361–3382. doi:10.1007/s11356-014-3849-9
  • Kalaivanan D, Ganeshamurthy AN. Mechanisms of heavy metal toxicity in plants. In: Rao NKS, Shivashankara KS, Laxman RH, editors. Abiotic stress physiology of horticultural crops. Berlin/Heidelberg, Germany: Springer;2016. p. 85–102.
  • Rizvi A, Khan MS. Heavy metal induced oxidative damage and root morphology alterations of maize (zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing azotobacter chroococcum. Ecotoxicol Environ Saf. 2018;157:9–20. doi:10.1016/j.ecoenv.2018.03.063
  • Dutta P, Karmakar A, Majumdar S, Roy S. Klebsiella pneumoniae (HR1) assisted alleviation of Cd (II) toxicity in Vigna mungo: a case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. Euro-Mediterr J Environ Integr. 2018;3:1–10. doi:10.1007/s41207-018-0069-6
  • Das A, Osborne JW. Monitoring the stress resistance of Pennisetum purpureum in Pb (II) contaminated soil bioaugmented with Enterobacter cloacae as defence strategy. Chemosphere. 2018;210:495–502. doi:10.1016/j.chemosphere.2018.07.050
  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD. A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: A promising and feasible approach. Environ Exper Bot. 2018;150:115–126. doi:10.1016/j.envexpbot.2018.03.001
  • Andresen E, Küpper H. Cadmium toxicity in plants. Cadmium: from toxicity to essentiality. Met Ions Life Sci. 2013;11: 395–413.
  • Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. cotoxicol. Environ Saf. 2018;156:183–196. doi:10.1016/j.ecoenv.2018.03.001
  • Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ Sci Pollut Res. 2018;25(26):25690–701. doi:10.1007/s11356-017-9058-6.
  • Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A. et al. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut. 2017;223:137–45. doi:10.1016/j.envpol.2016.12.073
  • Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M. et al. Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ Experi Bot. 2008;62:267–278. doi:10.1016/j.envexpbot.2007.09.002
  • Amirjani M. Effects of cadmium on wheat growth and some physiological factors. Int J For Soil Ero (IJFSE). 2012;2:50–58.
  • Yang Y, Zhang L, Huang X, Zhou Y, Quan Q, Li Y. et al. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PloS One. 2020;15:e0228563. doi:10.1371/journal.pone.0228563
  • Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res. 2008;98(1–3):551–64. doi:10.1007/s11120-008-9349-3.
  • Chen X, Wang J, Shi Y, Zhao M, Chi G. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot Stud. 2011;52:41–46.
  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci U S A. 1998;95(21):12719–23. doi:10.1073/pnas.95.21.12719.
  • Barra Caracciolo A, Terenzi V. Rhizosphere microbial communities and heavy metals. Microorganisms. 2021;9(7):1462. doi:10.3390/microorganisms9071462.
  • Singh HP, Batish DR, Kohli RK, Arora K. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 2007;53(1):65–73. doi:10.1007/s10725-007-9205-z.
  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (zea mays) plants. Ecotoxicol Environ Saf. 2014;110:143–52. doi:10.1016/j.ecoenv.2014.08.020
  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of brassica napus L. under nickel stress. Sci Hort. 2010;126:402–407. doi:10.1016/j.scienta.2010.07.037
  • Ke T, Guo G, Liu J, Zhang C, Tao Y, Wang P, Xu Y, Chen L et al. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ Pollut. 2021;271:116314. doi:10.1016/j.envpol.2020.116314
  • Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf. 2019;167:218–26. doi:10.1016/j.ecoenv.2018.10.016
  • Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genet Eng Biotechnol. 2021;19(1):1–14. doi:10.1186/s43141-021-00254-8.
  • Khan MA, Yasmin H, Shah ZA, Rinklebe J, Alyemeni MN, Ahmad P. Co application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere. 2022;294:133796. doi:10.1016/j.chemosphere.2022.133796
  • Ruscitti M, Arango M, Beltrano J. Improvement of copper stress tolerance in pepper plants (capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor Exp Plant Physiol. 2017;29(1):37–49. doi:10.1007/s40626-016-0081-7.
  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. Application of bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremed. 2017;19:813–824. doi:10.1080/15226514.2017.1290580
  • Garg N, Kaur H. Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant. 2012;34(4):1363–80. doi:10.1007/s11738-012-0933-y.
  • Khanna K, Kohli SK, Bali S, Kaur P, Saini P, Bakshi P, P Orhi, AM Bilal, R Bhardwaj. Role of micro-organisms in modulating antioxidant defence in plants exposed to metal toxicityH. In: Mirza N, Kamrun F, Masayuki. editors. Plants Under Metal And Metalloid Stress: Responses, Tolerance And Remediation. Singapore: Springer Nature; 2018. p. 303–335.
  • Sharma SS, Dietz K-J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009;14(1):43–50. doi:10.1016/j.tplants.2008.10.007.
  • Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. doi:10.3389/fenvs.2014.00053
  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium spirulina platensis-S5. Ecotoxicol Environ Saf. 2007;66(2):204–9. doi:10.1016/j.ecoenv.2006.02.002.
  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK. Role of heavy metal resistant Ochrobactrum sp. and bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol. 2013;51(1):11–7. doi:10.1007/s12275-013-2330-7.
  • Mesa-Marín J, Del-Saz NF, Rodríguez-Llorente ID, Redondo-Gómez S, Pajuelo E, Ribas-Carbó M. et al. PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation. Front Plant Sci. 2018;9:1500. doi:10.3389/fpls.2018.01500
  • Lin H, Peng Y, Chen J, Liang L. Effect of heavy metal stress on antioxidase enzymes. 2015 6th International Conference on Manufacturing Science and Engineering. Guangzhou, China: Atlantis Press; 2015:871–876.
  • Herman B, Biczak R, Gurgul E. Effect of 1, 10-phenanthroline on peroxidase and catalase activity and chlorophyll, sugar, and ascorbic acid contents. Biol Plant. 1998;41(4):607–11. doi:10.1023/A:1001808903867.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012. doi:10.1155/2012/217037.
  • Pishchik V, Mirskaya G, Chizhevskaya E, Chebotar V, Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJ. 2021;9:e12230. doi:10.7717/peerj.12230