1,071
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Insights on the enhancement of chilling tolerance in Rice through over-expression and knock-out studies of OsRBCS3

ORCID Icon, , &
Article: 2318514 | Received 09 Nov 2023, Accepted 08 Feb 2024, Published online: 20 Feb 2024

References

  • Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3. Cell Res. 2012;22:1666–9. doi:10.1038/cr.2012.151
  • Xu Y, Wang R, Wang Y, Zhang L, Yao S. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice. Plant, Cell & Environ. 2020;43(4):992–1007. doi:10.1111/pce.13717
  • Yongbin Q, Summat P, Panyawut N, Sikaewtung K, Ditthab K, Tongmark K, Chakhonkaen S, Sangarwut N, Wasinanon T, Kaewmungkun K. et al. Identification of rice accessions having cold tolerance at the seedling stage and development of novel genotypic assays for predicting cold tolerance. Plants. 2023;12(1):12. doi:10.3390/plants12010215
  • Li Z, Wang B, Luo W, Xu Y, Wang J, Xue Z, Niu Y, Cheng Z, Ge S, Zhang W. et al. Natural variation of codon repeats in COLD11 endows rice with chilling resilience. Sci Adv. 2023;9(1):eabq5506. doi:10.1126/sciadv.abq5506
  • Jiang S, Yang C, Xu Q, Wang L, Yang X, Song X, Wang J, Zhang X, Li B, Li H, et al. Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice. Int J Mol Sci 2020; 21. doi:10.3390/ijms21041284
  • Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H. et al. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice. 2018;11(1):24. doi:10.1186/s12284-018-0218-1 Rice (N Y
  • Guo H, Zeng Y, Li J, Ma X, Zhang Z, Lou Q, Li J, Gu Y, Zhang H, Li J. et al. Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice. Plant Biotechnol J. 2020;18(12):2491–503. doi:10.1111/pbi.13424
  • Zhang Z, Li J, Pan Y, Li J, Zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W. et al. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun. 2017;8(1):14788. doi:10.1038/ncomms14788
  • Moon SJ, Min MK, Kim JA, Kim DY, Yoon IS, Kwon TR, Byun MO, Kim BG. Ectopic Expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in Rice. Front Plant Sci. 2019;10:297. doi:10.3389/fpls.2019.00297
  • Yang YW, Chen HC, Jen WF, Liu LY, Chang MC, Chakrabarty D. Comparative transcriptome analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, Phytohormones, and transcription factors. PloS One. 2015;10(7):e0131391. doi:10.1371/journal.pone.0131391
  • Ding Y, Jia Y, Shi Y, Zhang X, Song C, Gong Z, Yang S. OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. EMBO J. 2018;37(8). doi:10.15252/embj.201798228
  • Heureux AMC, Young JN, Whitney SM, Eason-Hubbard MR, Lee RBY, Sharwood RE, Rickaby REM. The role of rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae. J Exp Bot. 2017;68:3959–3969. doi:10.1093/jxb/erx179
  • Yamada K, Davydov II, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. J Exp Bot. 2019;70:6127–6139. doi:10.1093/jxb/erz363
  • Ogawa S, Suzuki Y, Yoshizawa R, Kanno K, Makino A. Effect of individual suppression of RBCS multigene family on rubisco contents in rice leaves. Plant, Cell & Environ. 2012;35(3):546–53. doi:10.1111/j.1365-3040.2011.02434.x
  • Suzuki Y, Nakabayashi K, Yoshizawa R, Mae T, Makino A. Differences in expression of the RBCS multigene family and rubisco protein content in various rice plant tissues at different growth stages. Plant Cell Physiol. 2009;50(10):1851–5. doi:10.1093/pcp/pcp120
  • Yang M, Li H, Xie J, Ribulose-1 LH. 5-bisphosphate carboxylase/oxygenase (Rubisco). Zhi Wu Sheng Li Xue Bao (2011). 2007;43:363–368. https://kns.cnki.net/kcms2/article/abstract?v=xBNwvqFr00IZ-VTWHvL_eC8hTiblTyX-uQ1Lmxphy3w9MnKa8ZJlVV5Fc-s-6CGq1Ts0V4_xtltFNBYhKiGGBuv2ZGg4B7BXR1YAAAjWUCH0UrFY7AYOlbHtSF9s_I7x&uniplatform=NZKPT&flag=copy.
  • Guo Z, Cai L, Liu C, Huang C, Chen Z, Pan G, Guo T. Global analysis of differentially expressed genes between two Japonica rice varieties induced by low temperature during the booting stage by RNA-Seq. R Soc Open Sci. 2020;7:192243. doi:10.1098/rsos.192243
  • Ma D. Cloning and functional analysis of the candidate cold-tolerant gene OsRBCS3 in rice kongyu 131 during the seedling stage. [master, Heilongjiang University]; 2016. https://kns.cnki.net/kcms2/article/abstract?v=xBNwvqFr00LLtQQYzNCcGEbZ7tsqaRQiv6ejOTO88UomboaIKjEy2tXzEmk39Z3VvyQOPydp0mz5wsrjyLOxDY2qI500j0OLhZa6J8dIFdBDVGNDvvJlPF6eKHBFsH8QoSADmWm5cVU=&uniplatform=NZKPT&flag=copy.
  • Guo Z, Liu C, Xiao W, Wang R, Zhang L, Guan S, Zhang S, Cai L, Liu H, Huang X. et al. Comparative Transcriptome Profile Analysis of Anther Development in reproductive stage of Rice in cold region under cold stress. Plant Mol Biol Rep. 2019;37(3):129–45. doi:10.1007/s11105-019-01137-6
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.1262
  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep. 2011;30(3):399–406. doi:10.1007/s00299-010-0985-7
  • Giannopolitis CN, Ries SK. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977;59(2):309–14. doi:10.1104/pp.59.2.309
  • Kraus TE, Fletcher RA. Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant Cell Physiol. 1994;35:45–52. doi:10.1093/oxfordjournals.pcp.a078569
  • Miao BH, Han XG, Zhang WH. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot-London. 2010;105(6):967–973. doi:10.1093/aob/mcq063
  • Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541–56. doi:10.1093/jxb/err431
  • Usuda H. The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol. 1985;26:1455–1463. doi:10.1093/oxfordjournals.pcp.a077047
  • Liu H, Ma Y, Chen N, Guo S, Liu H, Guo X, CHONG K, XU Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant, Cell & Environ. 2014;37:1144–1158. doi:10.1111/pce.12223
  • Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z, Yang S. BRASSINOSTEROID-INSENSITIVE2 negatively regulates the Stability of Transcription Factor ICE1 in response to cold stress in Arabidopsis. Plant Cell. 2019;31:2682–2696. doi:10.1105/tpc.19.00058
  • Pan Y, Liang H, Gao L, Dai G, Chen W, Yang X, Qing D, Gao J, Wu H, Huang J. et al. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC Plant Biol. 2020;20(1):371. doi:10.1186/s12870-020-02569-z
  • Taylaran RD, Adachi S, Ookawa T, Usuda H, Hirasawa T. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. J Exp Bot. 2011;62(11):4067–77. doi:10.1093/jxb/err126
  • Olennikov DN, Chirikova NK, Kashchenko NI, Gornostai TG, Selyutina IY, Zilfikarov IN. Effect of low temperature cultivation on the phytochemical profile and bioactivity of arctic plants: a case of dracocephalum palmatum. Int J Mol Sci. 2017;18(12):18. doi:10.3390/ijms18122579
  • Xin Chi Y, Yang L, Jiang Zhao C, Muhammad I, Bo Zhou X, De Zhu H. Effects of soaking seeds in exogenous vitamins on active oxygen metabolism and seedling growth under low-temperature stress. Saudi J Biol Sci. 2021;28(6):3254–61. doi:10.1016/j.sjbs.2021.02.065
  • Wang F, Sun Y, Shi Z. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms. 2019;7(9):289. doi:10.3390/microorganisms7090289
  • Chen H, Lai L, Li L, Liu L, Jakada BH, Huang Y, He Q, Chai M, Niu X, Qin Y. et al. AcoMYB4, an Ananas comosus L. MYB Transcription Factor, functions in osmotic stress through negative regulation of ABA signaling. Int J Mol Sci. 2020;21(16):5727. doi:10.3390/ijms21165727
  • Lee JH, Kwon MC, Jung ES, Lee CH, Oh MM. Physiological and Metabolomic Responses of Kale to combined chilling and UV-A treatment.” Int J Mol Sci 20, no. 19 (2019 20): 4950. doi:10.3390/ijms20194950
  • Dominguez T, Hernandez ML, Pennycooke JC, Jimenez P, Martinez-Rivas JM, Sanz C, Stockinger EJ, Sanchez-Serrano JJ, Sanmartin M. Increasing omega-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol. 2010;153:655–665. doi:10.1104/pp.110.154815
  • Cai B, Ning Y, Li Q, Li Q, Ai X. Effects of the chloroplast fructose-1,6-bisphosphate aldolase gene on growth and low-temperature tolerance of tomato.” Int J Mol Sci 23, no. 2 (2022 23): 728. doi:10.3390/ijms23020728
  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M. et al. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth. Nutr Uptake Photosy Cucu Seed Front Microbiol. 2017;8:2516. doi:10.3389/fmicb.2017.02516
  • Zhong M, Wang Y, Hou K, Shu S, Sun J, Guo S. Tgase positively regulates photosynthesis via activation of Calvin cycle enzymes in tomato. Hortic Res. 2019;6(1):92. doi:10.1038/s41438-019-0173-z
  • Liu X, Zhou Y, Xiao J, Bao F. Effects of chilling on the structure, function and development of chloroplasts. Front Plant Sci. 2018;9:1715. doi:10.3389/fpls.2018.01715
  • Luo Z, Zhou Z, Li Y, Tao S, Hu ZR, Yang JS, Cheng X, Hu R, Zhang W. Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC Plant Biol. 2022;22(1):369. doi:10.1186/s12870-022-03767-7
  • Rapacz M, Wolanin B, Hura K, Tyrka M. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Ann Bot. 2008;101(5):689–99. doi:10.1093/aob/mcn008
  • Zhuang K, Wang J, Jiao B, Chen C, Zhang J, Ma N, Meng Q. WHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating the expression of RbcS1 under chilling stress. J Exp Bot. 2020;71(12):3653–3663. doi:10.1093/jxb/eraa145
  • Li Z, Khan MU, Letuma P, Xie Y, Zhan W, Wang W, Jiang Y, Lin W, Zhang Z. Transcriptome analysis of the responses of rice leaves to chilling and subsequent recovery. Int J Mol Sci. 2022 23;23(18):10739. doi:10.3390/ijms231810739