779
Views
0
CrossRef citations to date
0
Altmetric
Review

The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus

ORCID Icon
Article: 2326870 | Received 29 Jan 2024, Accepted 29 Feb 2024, Published online: 11 Mar 2024

References

  • Tan J, Zhao H, Li J, Gong Y, Li X. The devastating rice blast airborne pathogen magnaporthe oryzae—a review on genes studied with mutant analysis. Pathogens. 2023;12(3):379. doi:10.3390/pathogens12030379.
  • Annegowda DC, Prasannakumar MK, Mahesh HB, Siddabasappa CB, Devanna P, Banakar SN, Manojkumar HB, Prasad SR. Rice blast disease in India: present status and future challenges. Integr Adv Rice Res. 2021;98847:157–9.
  • Molinari C, Talbot NJ. A basic guide to the growth and manipulation of the blast fungus, magnaporthe oryzae. Curr Protoc. 2022;2(8):e523. doi:10.1002/cpz1.523.
  • Devanna BN, Jain P, Solanke AU, Das A, Thakur S, Singh PK, Kumari M, Dubey H, Jaswal R, Pawar D. Understanding the dynamics of blast resistance in rice-magnaporthe oryzae interactions. J Fungi. 2022;8(6):584. doi:10.3390/jof8060584.
  • Huang J, Hartmann H, Ogaya R, Schöning I, Reichelt M, Gershenzon J, Peñuelas J. Hormone and carbohydrate regulation of defense secondary metabolites in a Mediterranean forest during drought. Environ Exp Bot. 2023;209:105298. doi:10.1016/j.envexpbot.2023.105298.
  • Zhang H, Zhao Y, Zhu J-K. Thriving under stress: how plants balance growth and the stress response. Dev Cell. 2020;55(5):529–543. doi:10.1016/j.devcel.2020.10.012.
  • Wang Y-J, Wu Q-S. Influence of sugar metabolism on the dialogue between arbuscular mycorrhizal fungi and plants. Hortic Adv. 2023;1(1):2. doi:10.1007/s44281-023-00001-8.
  • Aluko OO, Li C, Wang Q, Liu H. Sucrose utilization for improved crop yields: A review article. Int J Mol Sci. 2021;22(9):4704. doi:10.3390/ijms22094704.
  • Jeandet P, Formela-Luboińska M, Labudda M, Morkunas I. The role of sugars in plant responses to stress and their regulatory function during development. Int J Mol Sci. 2022;23(9):5161. doi:10.3390/ijms23095161.
  • Singh P, Singh A, Choudhary KK. Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress. 2023;7:100143. doi:10.1016/j.stress.2023.100143.
  • Piccini C, Cai G, Dias MC, Romi M, Longo R, Cantini C. UV-B radiation affects photosynthesis-related processes of two Italian (Olea europaea L.) varieties differently. Plants. 2020;9(12):1712–1721. doi:10.3390/plants9121712.
  • Van de Staaij J, Rozema J, Van Beem A, Aerts R. Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol. 2001;154(1/2):169–177. doi:10.1023/A:1012975605995.
  • Mmbando GS, Ando S, Takahashi H, Hidema J. High ultraviolet ‑ B sensitivity due to lower CPD photolyase activity is needed for biotic stress response to the rice blast fungus, Magnaporthe Oryzae. Photochem Photobiol Sci. 2023;22(6):1309–1321. doi:10.1007/s43630-023-00379-4.
  • Mmbando GS. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. Plant Signal Behav. 2023;18(1):2191463. doi:10.1080/15592324.2023.2191463.
  • Cruz-Mireles N, Eisermann I, Garduño-Rosales M, Molinari C, Ryder LS, Tang B, Yan X, Talbot NJ. The biology of invasive growth by the rice blast fungus magnaporthe oryzae. Magnaporthe Oryzae Methods Protoc. 2021;2356:19–40.
  • Zewdu Z. Rice blast biology and reaction of host to the disease. World News Nat Sci. 2021;39:11–21.
  • Eseola AB, Ryder LS, Osés-Ruiz M, Findlay K, Yan X, Cruz-Mireles N, Molinari C, Garduño-Rosales M, Talbot NJ. Investigating the cell and developmental biology of plant infection by the rice blast fungus magnaporthe oryzae. Fungal Genet Biol. 2021;154:103562. doi:10.1016/j.fgb.2021.103562.
  • Younas MU, Wang G, Du H, Zhang Y, Ahmad I, Rajput N, Li M, Feng Z, Hu K, Khan NU. Approaches to reduce rice blast disease using knowledge from host resistance and pathogen pathogenicity. Int J Mol Sci. 2023;24(5):4985. doi:10.3390/ijms24054985.
  • Misman SN, Ab Razak MSF, Sobri NSA, Zakaria L. Virulence pattern of pyricularia oryzae pathotypes towards blast monogenic lines. Trop Life Sci Res. 2021;32(3):147. doi:10.21315/tlsr2021.32.3.8.
  • Misman SN, Ab Razak MSF, Sobri NSA, Zakaria L, Ravel S, Veillet F, Meusnier I, Padilla A, Kroj T, Cesari S. Adaptive evolution in virulence effectors of the rice blast fungus Pyricularia oryzae. PloS Pathog. 2023;19(9):e1011294. doi:10.1371/journal.ppat.1011294.
  • Valent B. The impact of blast disease: past, present, and future. Magnaporthe Oryzae Methods Protoc. 2021;2356:1–18.
  • Jiang C-J, Liu X-L, Liu X-Q, Zhang H, Yu Y-J, Liang Z-W. Stunted growth caused by blast disease in rice seedlings is associated with changes in phytohormone signaling pathways. Front Plant Sci. 2017;8:1558. doi:10.3389/fpls.2017.01558.
  • Yang H, Luo P. Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. Int J Mol Sci. 2021;22(16):8865. doi:10.3390/ijms22168865.
  • Szulczyk KR. Estimating the economic costs and mitigation of rice blast infecting the Malaysian paddy fields. SN Bus Econ. 2022;3(1):16. doi:10.1007/s43546-022-00389-x.
  • Chen J, Sun M, Xiao G, Shi R, Zhao C, Zhang Q, Yang S, Xuan Y. Starving the enemy: how plant and microbe compete for sugar on the border. Front Plant Sci. 2023;14:14. doi:10.3389/fpls.2023.1230254.
  • Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth–defense tradeoffs. New Phytol. 2022;233(3):1051–1066. doi:10.1111/nph.17773.
  • Gessler A, Grossiord C. Coordinating supply and demand. New Phytol. 2019;222(1):5–7. doi:10.1111/nph.15583.
  • Morkunas I, Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant. 2014;36(7):1607–1619. doi:10.1007/s11738-014-1559-z.
  • Chen D, Kamran M, Chen S, Xing J, Qu Z, Liu C, Ren Z, Cai X, Chen X, Xu J. Two nucleotide sugar transporters are important for cell wall integrity and full virulence of Magnaporthe oryzae. Mol Plant Pathol. 2023;24(4):374–390. doi:10.1111/mpp.13304.
  • He Y, Li X, Zhan F, Xie C, Zu Y, Li Y, Yue M. Resistance-related physiological response of rice leaves to the compound stress of enhanced UV-B radiation and magnaporthe oryzae. J Plant Interact. 2018;13(1):321–328. doi:10.1080/17429145.2018.1478007.
  • Tun W, Yoon J, KTX V, Cho L-H, Hoang TV, Peng X, Kim E-J, KTYS W, Lee S-W, Jung K-H. Sucrose preferentially promotes expression of OsWRKY7 and OsPR10a to enhance defense response to blast fungus in rice. Front Plant Sci. 2023;14:1117023. doi:10.3389/fpls.2023.1117023.
  • Duan G, Li C, Liu Y, Ma X, Luo Q, Yang J. Magnaporthe oryzae systemic defense trigger 1 (MoSDT1)-mediated metabolites regulate defense response in rice. BMC Plant Biol. 2021;21(1):1–12. doi:10.1186/s12870-020-02821-6.
  • Liu Y-H, Song Y-H, Ruan Y-L, Liesche J. Sugar conundrum in plant–pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. J Exp Bot. 2022;73(7):1910–1925. doi:10.1093/jxb/erab562.
  • Fatima U, Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. Front Plant Sci. 2015;6:750. doi:10.3389/fpls.2015.00750.
  • Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source–sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta. 2018;247(3):587–611. doi:10.1007/s00425-017-2807-4.
  • Xu Q, Yin S, Ma Y, Song M, Song Y, Mu S, Li Y, Liu X, Ren Y, Gao C. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2. Proc Natl Acad Sci. 2020;117(11):6223–6230. doi:10.1073/pnas.1912754117.
  • Chang T-G, Zhu X-G, Raines C. Source–sink interaction: a century old concept under the light of modern molecular systems biology. J Exp Bot. 2017;68(16):4417–4431. doi:10.1093/jxb/erx002.
  • Balasubramanian VK, Rivas-Ubach A, Winkler T, Mitchell H, Moran J, Ahkami AH. Modulation of polar auxin transport identifies the molecular determinants of source-sink carbon relationships and sink strength in poplar. bioRxiv. 2023;2:tpad073:2003–2023.
  • Li Y-M, Forney C, Bondada B, Leng F, Xie Z-S. The molecular regulation of carbon sink strength in grapevine (Vitis vinifera L.). Front Plant Sci. 2021;11:606918. doi:10.3389/fpls.2020.606918.
  • Zepeda AC, Heuvelink E, Marcelis LFM, Hammer G. Carbon storage in plants: a buffer for temporal light and temperature fluctuations. In Silico Plants. 2023;5(1):diac020. doi:10.1093/insilicoplants/diac020.
  • Li Y, Tu M, Feng Y, Wang W, Messing J. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement. Biotechnol Biofuels. 2019;12(1):1–19. doi:10.1186/s13068-019-1612-7.
  • Holland BL, Monk NAM, Clayton RH, Osborne CP. A theoretical analysis of how plant growth is limited by carbon allocation strategies and respiration. In Silico Plants. 2019;1(1):diz004. doi:10.1093/insilicoplants/diz004.
  • Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and tuberous root development. Annu Rev Plant Biol. 2021;72(1):551–580. doi:10.1146/annurev-arplant-080720-084456.
  • Hartmann H, Bahn M, Carbone M, Richardson AD. Plant carbon allocation in a changing world–challenges and progress: introduction to a virtual issue on carbon allocation. New Phytol. 2020;227(4):981–988. doi:10.1111/nph.16757.
  • Dewar RC, Ludlow AR, Dougherty PM. Environmental influences on carbon allocation in pines. Ecol Bull. 1994;43:92–101.
  • Pottier D, Roitsch T, Persson S. Cell wall regulation by carbon allocation and sugar signaling. Cell Surf. 2023;9:100096. doi:10.1016/j.tcsw.2023.100096.
  • Zhang S, Kan J, Liu X, Wu Y, Zhang M, Ou J, Wang J, An L, Li D, Wang L. Phytopathogenic bacteria utilize host glucose as a signal to stimulate virulence through LuxR homologues. Mol Plant Pathol. 2023;24(4):359–373. doi:10.1111/mpp.13302.
  • Hong Y, Cai R, Guo J, Zhong Z, Bao J, Wang Z, Chen X, Zhou J, Lu G. Carbon catabolite repressor MoCreA is required for the asexual development and pathogenicity of the rice blast fungus. Fungal Genet Biol. 2021;146:103496. doi:10.1016/j.fgb.2020.103496.
  • Bhatt DN, Ansari S, Kumar A, Ghosh S, Narula A, Datta A. Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis. Microbiol Res. 2020;239:126550. doi:10.1016/j.micres.2020.126550.
  • Deng YZ, Naqvi NI. Metabolic basis of pathogenesis and host adaptation in rice blast. Annu Rev Microbiol. 2019;73(1):601–619. doi:10.1146/annurev-micro-020518-115810.
  • Ma J, Morel J-B, Riemann M, Nick P. Jasmonic acid contributes to rice resistance against Magnaporthe oryzae. BMC Plant Biol. 2022;22(1):601. doi:10.1186/s12870-022-03948-4.
  • Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front Plant Sci. 2022;13:1044896. doi:10.3389/fpls.2022.1044896.
  • Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiol. 2021;186(2):836–852. doi:10.1093/plphys/kiab127.
  • Ninkuu V, Yan J, Zhang L, Fu Z, Yang T, Li S, Li B, Duan J, Ren J, Li G. Hrip1 mediates rice cell wall fortification and phytoalexins elicitation to confer immunity against magnaporthe oryzae. Front Plant Sci. 2022;13:980821. doi:10.3389/fpls.2022.980821.
  • Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, Chen X. Cell wall associated immunity in plants. Stress Biol. 2021;1(1):3. doi:10.1007/s44154-021-00003-4.
  • Li W, Wang K, Chern M, Liu Y, Zhu Z, Liu J, Zhu X, Yin J, Ran L, Xiong J. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves. New Phytol. 2020;226(6):1850–1863. doi:10.1111/nph.16505.
  • Jing W, Uddin S, Chakraborty R, Van Anh DT, Macoy DM, Park SO, Ryu GR, Kim YH, Cha J, Kim W-Y. Molecular characterization of HEXOKINASE1 in plant innate immunity. Appl Biol Chem. 2020;63(1):1–10. doi:10.1186/s13765-020-00560-8.
  • Huai B, Yuan P, Ma X, Zhang X, Jiang L, Zheng P, Yao M, Chen Z, Chen L, Shen Q. Sugar transporter TaSTP3 activation by TaWRKY19/61/82 enhances stripe rust susceptibility in wheat. New Phytol. 2022;236(1):266–282. doi:10.1111/nph.18331.
  • Prescott CE, Grayston SJ, Helmisaari H-S, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I. Surplus carbon drives allocation and plant–soil interactions. Trends Ecol Evol. 2020;35(12):1110–1118. doi:10.1016/j.tree.2020.08.007.
  • Kelly C, Haddix ML, Byrne PF, Cotrufo MF, Schipanski M, Kallenbach CM, Wallenstein MD, Fonte SJ. Divergent belowground carbon allocation patterns of winter wheat shape rhizosphere microbial communities and nitrogen cycling activities. Soil Biol Biochem. 2022;165:108518. doi:10.1016/j.soilbio.2021.108518.
  • Zhou Y, Yao Q, Zhu H. Soil organic carbon attenuates the influence of plants on root-associated bacterial community. Front Microbiol. 2020;11:594890. doi:10.3389/fmicb.2020.594890.
  • Lahari Z, van Boerdonk S, Omoboye OO, Reichelt M, Höfte M, Gershenzon J, Gheysen G, Ullah C. Strigolactone deficiency induces jasmonate, sugar and flavonoid phytoalexin accumulation enhancing rice defense against the blast fungus pyricularia oryzae. New Phytol. 2024;241(2):827–844. doi:10.1111/nph.19354.
  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 2013;4:272. doi:10.3389/fpls.2013.00272.
  • Yang X, Jiang Y, Xue F, Ding X, Cui M, Dong M, Kang M. Effects of environmental factors on the nonstructural carbohydrates in Larix principis-rupprechtii. Forests. 2023;14(2):345. doi:10.3390/f14020345.
  • Siddiqui H, Sami F, Hayat S. Glucose: sweet or bitter effects in plants-a review on current and future perspective. Carbohydr Res. 2020;487:107884. doi:10.1016/j.carres.2019.107884.
  • Wang Q, Huang Z, Khan IA, Li Y, Wang J, Wang J, Liu X-H, Lin F, Lu J. Key transcription factors required for outburst of rice blast disease in magnaporthe oryzae. Phytopathol Res. 2024;6(1):1–22. doi:10.1186/s42483-024-00225-0.
  • Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA, Hynes M. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE–Family Pump regulate glucose metabolism during Infection. PloS Genet. 2012;8(5):e1002673. doi:10.1371/journal.pgen.1002673.
  • Kou Y, He Y, Qiu J, Shu Y, Yang F, Deng YZ, Naqvi NI. Mitochondrial dynamics and mitophagy are necessary for proper invasive growth in rice blast. Mol Plant Pathol. 2019;20(8):1147–1162. doi:10.1111/mpp.12822.
  • Schultz JC, Appel HM, Ferrieri AP, Arnold TM. Flexible resource allocation during plant defense responses. Front Plant Sci. 2013;4:324. doi:10.3389/fpls.2013.00324.
  • Dominguez PG, Donev E, Derba‐Maceluch M, Bünder A, Hedenström M, Tomášková I, Mellerowicz EJ, Niittylä T. Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen. New Phytol. 2021;229(1):186–198. doi:10.1111/nph.16721.
  • Xie W, Hodge A, Hao Z, Fu W, Guo L, Zhang X, Chen B. Increased carbon partitioning to secondary metabolites under phosphorus deficiency in Glycyrrhiza uralensis Fisch. Is modulated by plant growth stage and arbuscular mycorrhizal symbiosis. Front Plant Sci. 2022;13:876192. doi:10.3389/fpls.2022.876192.
  • Chowdhary V, Alooparampil S, Pandya RV, Tank JG. Physiological function of phenolic compounds in plant defense system. Phenolic Compd Synth Divers Non-Conventional Ind Pharm Ther Appl. 2021.
  • Yadav UP, Ayre BG, Bush DR. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. Front Plant Sci. 2015;6:275. doi:10.3389/fpls.2015.00275.
  • Muhie SH. Optimization of photosynthesis for sustainable crop production. CABI Agric Biosci. 2022;3(1):1–8. doi:10.1186/s43170-022-00117-3.
  • Chiewchankaset P, Thaiprasit J, Kalapanulak S, Wojciechowski T, Boonjing P, Saithong T. Effective metabolic carbon utilization and shoot-to-root partitioning modulate distinctive yield in high yielding cassava variety. Front Plant Sci. 2022;13:832304. doi:10.3389/fpls.2022.832304.
  • Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: a review. Remote Sens. 2020;12(19):3136. doi:10.3390/rs12193136.
  • Balafoutis A, Beck B, Fountas S, Vangeyte J, Van der Wal T, Soto I, Gómez-Barbero M, Barnes A, Eory V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability. 2017;9(8):1339. doi:10.3390/su9081339.
  • Javaid M, Haleem A, Khan IH, Suman R. Understanding the potential applications of artificial intelligence in agriculture sector. Adv Agrochem. 2023;2(1):15–30. doi:10.1016/j.aac.2022.10.001.
  • Koné Y, Alves E, da Silveira PR, Cruz-Magalhães V, Botelho FBS, Ferreira AN, Guimarães SDS, de Medeiros FHV, FHV DM. Microscopic and molecular studies in the biological control of rice blast caused by pyricularia oryzae with Bacillus sp. BMH under greenhouse conditions. Biol Control. 2022;172:104983. doi:10.1016/j.biocontrol.2022.104983.
  • Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T. Biological and biorational management of blast diseases in cereals caused by magnaporthe oryzae. Crit Rev Biotechnol. 2021;41(7):994–1022. doi:10.1080/07388551.2021.1898325.
  • Singh SK, Wu X, Shao C, Zhang H. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2022;2(1):1–14. doi:10.1007/s44154-021-00027-w.
  • Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in plant growth and development: roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms. 2022;10(8):1528. doi:10.3390/microorganisms10081528.
  • Chou C, Castilla N, Hadi B, Tanaka T, Chiba S, Sato I. Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Prot. 2020;135:104864. doi:10.1016/j.cropro.2019.104864.
  • Nascimento VD, Arf O, Alves MC, de Souza EJ, Da Silva PRT, Kaneko FH, Teixeira Filho MCM, Jalal A, Oliveira CDS, Sabundjian MT. et al. Cover crops and mechanical scarification in the yield and industrial quality of upland rice. Front Environ Sci. 2022;10:895993. doi:10.3389/fenvs.2022.895993.
  • Meirelles FC, Cavalcante AG, Gonzaga AR, Filla VA, Roms RZ, Coelho AP, Arf O, Lemos LB. Upland rice intercropped with green manures and its impact on the succession with common bean. J Agric Sci. 2021;159(9–10):658–667. doi:10.1017/S0021859621000940.
  • Stratton CA, Ray S, Bradley BA, Kaye JP, Ali JG, Murrell EG. Nutrition vs association: plant defenses are altered by arbuscular mycorrhizal fungi association not by nutritional provisioning alone. BMC Plant Biol. 2022;22(1):1–10. doi:10.1186/s12870-022-03795-3.
  • Tripathi R, Tewari R, Singh KP, Keswani C, Minkina T, Srivastava AK, De Corato U, Sansinenea E. Plant mineral nutrition and disease resistance: a significant linkage for sustainable crop protection. Front Plant Sci. 2022;13:3116. doi:10.3389/fpls.2022.883970.
  • Gupta N, Debnath S, Sharma S, Sharma P, Purohit J. Role of nutrients in controlling the plant diseases in sustainable agriculture. Agric Important Microbes Sustain Agric Vol 2 Appl Crop Prod Prot. 2017;217–262.
  • Van Laere J, Willemen A, De Bauw P, Hood‐Nowotny R, Merckx R, Dercon G. Carbon allocation in cassava is affected by water deficit and potassium application – a 13 C-CO 2 pulse labelling assessment. Rapid Commun Mass Spectrom. 2023;37(2):e9426. doi:10.1002/rcm.9426.
  • Atere CT, Ge T, Zhu Z, Wei L, Zhou P, He X, Kuzyakov Y, Wu J, Lupwayi N. Carbon allocation and fate in paddy soil depending on phosphorus fertilization and water management: results of 13C continuous labelling of rice. Can J Soil Sci. 2018;98(3):469–483. doi:10.1139/cjss-2018-0008.
  • Li Z, Lai Q, Bao Y, Sude B, Bao Z, Liu X. Carbon allocation to leaves and its controlling factors and impacts on gross primary productivity in forest ecosystems of Northeast China. Forests. 2024;15(1):129. doi:10.3390/f15010129.
  • Sugan SK, Simon R. Analyzing real time farming using internet of things in agriculture. International Conference on Sustainable Development through Machine Learning, AI and IoT; Switzerland. Springer. 2023. p. 204–215.
  • Mathew I, Shimelis H, Mutema M, Clulow A, Zengeni R, Mbava N, Chaplot V. Selection of wheat genotypes for biomass allocation to improve drought tolerance and carbon sequestration into soils. J Agron Crop Sci. 2019;205(4):385–400. doi:10.1111/jac.12332.
  • Boatwright JL, Sapkota S, Myers M, Kumar N, Cox A, Jordan KE, Kresovich S. Dissecting the genetic architecture of carbon partitioning in sorghum using multiscale phenotypes. Front Plant Sci. 2022;13:790005. doi:10.3389/fpls.2022.790005.
  • Rizi MS, Mohammadi M. Breeding crops for enhanced roots to mitigate against climate change without compromising yield. Rhizosphere. 2023;26:100702. doi:10.1016/j.rhisph.2023.100702.
  • Dingkuhn M, Luquet D, Fabre D, Muller B, Yin X, Paul MJ. The case for improving crop carbon sink strength or plasticity for a CO2-rich future. Curr Opin Plant Biol. 2020;56:259–272. doi:10.1016/j.pbi.2020.05.012.
  • Suganami M, Suzuki Y, Tazoe Y, Yamori W, Makino A. Co-overproducing rubisco and rubisco activase enhances photosynthesis in the optimal temperature range in rice. Plant Physiol. 2021;185:108–119. doi:10.1093/plphys/kiaa026.
  • Qu W, Robert CAM, Erb M, Hibbard BE, Paven M, Gleede T, Riehl B, Kersting L, Cankaya AS, Kunert AT. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory. Plant Physiol. 2016;172:776–788. doi:10.1104/pp.16.00735.
  • Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. Breeding toward improved ecological plant–microbiome interactions. Trends Plant Sci. 2022;27(11):1134–1143. doi:10.1016/j.tplants.2022.06.004.
  • Liang X-G, Gao Z, Fu X-X, Chen X-M, Shen S, Zhou S-L. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. Front Plant Sci. 2023;14:14. doi:10.3389/fpls.2023.1206829.
  • Ceballos-Núñez V, Müller M, Sierra CA. Towards better representations of carbon allocation in vegetation: a conceptual framework and mathematical tool. Theor Ecol. 2020;13(3):317–332. doi:10.1007/s12080-020-00455-w.
  • Bohnert S, Antelo L, Grünewald C, Yemelin A, Andresen K, Jacob S. Rapid adaptation of signaling networks in the fungal pathogen magnaporthe oryzae. BMC Genomics. 2019;20(1):1–16. doi:10.1186/s12864-019-6113-3.
  • Wang Q, Li J, Lu L, He C, Li C. Novel variation and evolution of AvrPiz-t of magnaporthe oryzae in field isolates. Front Genet. 2020;11:746. doi:10.3389/fgene.2020.00746.
  • Umaña MN, Cao M, Lin L, Swenson NG, Zhang C, Liu X. Trade‐offs in above‐and below‐ground biomass allocation influencing seedling growth in a tropical forest. J Ecol. 2021;109(3):1184–1193. doi:10.1111/1365-2745.13543.
  • Blumstein M, Sala A, Weston DJ, Holbrook NM, Hopkins R. Plant carbohydrate storage: intra‐and inter‐specific trade‐offs reveal a major life history trait. New Phytol. 2022;235(6):2211–2222. doi:10.1111/nph.18213.
  • Russo SE, Ledder G, Muller EB, Nisbet RM, Hultine K. Dynamic energy budget models: fertile ground for understanding resource allocation in plants in a changing world. Conserv Physiol. 2022;10(1):coac061. doi:10.1093/conphys/coac061.
  • Mmbando GS. Omics: a new, promising technologies for boosting crop yield and stress resilience in African agriculture. Plant Stress. 2024;100366. doi:10.1016/j.stress.2024.100366.
  • Meng F, Hong S, Wang J, Chen A, Zhang Y, Zhang Y, Janssens IA, Mao J, Myneni RB, Peñuelas J. Climate change increases carbon allocation to leaves in early leaf green‐up. Ecol Lett. 2023;26(5):816–826. doi:10.1111/ele.14205.