617
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Physiology and transcriptome of Eucommia ulmoides seeds at different germination stages

, , &
Article: 2329487 | Received 13 Oct 2023, Accepted 03 Jan 2024, Published online: 17 Mar 2024

References

  • Zhu M-Q, Sun R-C. Eucommia ulmoides Oliver: a potential feedstock for bioactive products. J Agric Food Chem. 2018;66(22):5433–14. doi:10.1021/acs.jafc.8b01312.
  • Li L, Li ZM, Wang YZ. A method of two-dimensional correlation spectroscopy combined with residual neural network for comparison and differentiation of medicinal plants raw materials superior to traditional machine learning: a case study on Eucommia ulmoides leaves. Plant Methods. 2022;18(1):1–17. doi:10.1186/s13007-022-00935-6.
  • Xia L, Wang Y, Ma Z, Xin Z. The organic–aqueous extraction of natural eucommia ulmoides rubber and its properties and application in car radial tires. Adv Polym Technol. 2017;36(3):295–300. doi:10.1002/adv.21607.
  • Chen C-H, Shen Y-K, Hsieh S-C. The investigation of gutta-percha temperature and compaction force change when using the vertical compaction of warm gutta-percha technique. J Polym Eng. 2014;34(3):219–223. doi:10.1515/polyeng-2013-0211.
  • Wei X, Peng P, Peng F, Dong J. Natural polymer Eucommia ulmoides rubber: A novel material. J Agric Food Chem. 2021;69(13):3797–3821. doi:10.1021/acs.jafc.0c07560.
  • Liu X, Wang X, Kang K, Sun G, Zhu M. Review on extraction, characteristic, and engineering of the eucommia ulmodies rubber for industrial application. Ind Crops Prod. 2022;180:114733. doi:10.1016/j.indcrop.2022.114733.
  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473. doi:10.3389/fpls.2018.01473.
  • Han C, Yang P. Studies on the molecular mechanisms of seed germination. Proteomics. 2015;15(10):1671–1679. doi:10.1002/pmic.201400375.
  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot. 2020;175:104040. doi:10.1016/j.envexpbot.2020.104040.
  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci. 2019;10:1349. doi:10.3389/fpls.2019.01349.
  • Zhang Y, Li Y, Hassan MJ, Li Z, Peng Y. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biol. 2020;20(1):1–12. doi:10.1186/s12870-020-02354-y.
  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci Res. 2010;20(2):55–67. doi:10.1017/S0960258510000012.
  • Eggert K, von Wirén N. Response of the plant hormone network to boron deficiency. New Phytol. 2017;216(3):868–881. doi:10.1111/nph.14731.
  • Ahammed GJ, Li Y, Cheng Y, Liu A, Chen S, Li X. Abscisic acid and gibberellins act antagonistically to mediate epigallocatechin-3-gallate-retarded seed germination and early seedling growth in tomato. J Plant Growth Regul. 2020;39(4):1414–1424. doi:10.1007/s00344-020-10089-1.
  • Kamran M, Wang D, Xie K, Lu Y, Shi C, Sabagh AE, Gu W, Xu P. Pre-sowing seed treatment with kinetin and calcium mitigates salt induced inhibition of seed germination and seedling growth of choysum (Brassica rapa var. parachinensis). Ecotox Environ Safe. 2021;227:112921. doi:10.1016/j.ecoenv.2021.112921.
  • Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep. 2021;40(8):1471–1494. doi:10.1007/s00299-021-02687-4.
  • Shu K, Liu X-D, Xie Q. He Z-h: two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant. 2016;9(1):34–45. doi:10.1016/j.molp.2015.08.010.
  • Shuai H, Meng Y, Luo X, Chen F, Zhou W, Dai Y, Qi Y, Du J, Yang F, Liu J. et al. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci Rep. 2017;7(1):12620. doi:10.1038/s41598-017-13093-w.
  • Duan C, Duan Y, Xiao F. Dynamic changes of endogenous phytohormones during after-ripening process of Panax notoginseng seeds. Zhongcaoyao= Chin Tradit Herb Drugs 2011, 42(4):779–782.
  • Su H, Zhou X, Li X, Chen M, Zhou J, Tang J, Feng M, Zhang L. Dynamic changes of enzyme and endogenous of Paris polyphylla Smith var. yunnanensis seed during different stages of germination. He Nong Xue Bao 2018, 32(1):141–149.
  • Barreto LC, Herken DM, Silva BM, Munné-Bosch S, Garcia QS. ABA and GA 4 dynamic modulates secondary dormancy and germination in syngonanthus verticillatus seeds. Planta. 2020;251(4):1–10. doi:10.1007/s00425-020-03378-2.
  • Sasaki K, Kim M-H, Kanno Y, Seo M, Kamiya Y, Imai R. Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Bioph Res Co. 2015;456(1):380–384. doi:10.1016/j.bbrc.2014.11.092.
  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang H-Q, Luan S, Li J, He Z-H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in arabidopsis. Proc Natl Acad Sci USA. 2013;110(38):15485–15490. doi:10.1073/pnas.1304651110.
  • Wang Z, Chen F, Li X, Cao H, Ding M, Zhang C, Zuo J, Xu C, Xu J, Deng X. et al. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun. 2016;7(1):13412. doi:10.1038/ncomms13412.
  • Garay‐Arroyo A, De La Paz Sánchez M, García‐Ponce B, Azpeitia E, Álvarez‐Buylla ER. Hormone symphony during root growth and development. Dev Dynam. 2012;241(12):1867–1885. doi:10.1002/dvdy.23878.
  • Park J, Kim Y-S, Kim S-G, Jung J-H, Woo J-C, Park C-M. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 2011;156(2):537–549. doi:10.1104/pp.111.177071.
  • Brookbank BP, Patel J, Gazzarrini S, Nambara E. Role of basal ABA in plant growth and development. Genes. 2021;12(12):1936. doi:10.3390/genes12121936.
  • Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021;22(10):627–644. doi:10.1038/s41576-021-00370-8.
  • Zaynab M, Pan D, Fatima M, Chen S, Chen W. Transcriptomic approach to address low germination rate in cyclobalnopsis gilva seeds. S Afr J Bot. 2018;119:286–294. doi:10.1016/j.sajb.2018.09.024.
  • Digel B, Pankin A, von Korff M. Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell. 2015;27(9):2318–2334. doi:10.1105/tpc.15.00203.
  • Liu W-Y, Chang Y-M, Chen S-C, Lu C-H, Wu Y-H, Lu M-Y, Chen D-R, Shih A-C, Sheue C-R, Huang H-C. et al. Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proc Natl Acad Sci USA. 2013;110(10):3979–3984. doi:10.1073/pnas.1301009110.
  • Cheng X, Cao J, Gao C, Gao W, Yan S, Yao H, Xu K, Liu X, Xu D, Pan X. et al. Identification of the wheat C3H gene family and expression analysis of candidates associated with seed dormancy and germination. Plant Physiol Bioch. 2020;156:524–537. doi:10.1016/j.plaphy.2020.09.032.
  • Klupczyńska EA, Pawłowski TA. Regulation of seed dormancy and germination mechanisms in a changing environment. Int J Mol Sci. 2021;22(3):1357. doi:10.3390/ijms22031357.
  • Laurentin A, Edwards CA. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem. 2003;315(1):143–145. doi:10.1016/S0003-2697(02)00704-2.
  • Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 2001;127(1):315–323. doi:10.1104/pp.127.1.315.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262.
  • Zhao M, Zhang H, Yan H, Qiu L, Baskin CC. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci. 2018;9:234. doi:10.3389/fpls.2018.00234.
  • Gu J, Chao H, Gan L, Guo L, Zhang K, Li Y, Wang H, Raboanatahiry N, Li M. Proteomic dissection of seed germination and seedling establishment in Brassica napus. Front Plant Sci. 2016;7:1482. doi:10.3389/fpls.2016.01482.
  • Liang Q, Dong J, Wang S, Shao W, Ahmed AF, Zhang Y, Kang W. Immunomodulatory effects of Nigella sativa seed polysaccharides by gut microbial and proteomic technologies. Int J Biol Macromol. 2021;184:483–496. doi:10.1016/j.ijbiomac.2021.06.118.
  • Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: An overview. Plant Reprod. 2018;31(3):263–290. doi:10.1007/s00497-018-0336-3.
  • Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, Gerós H. A molecular perspective on starch metabolism in woody tissues. Planta. 2018;248(3):559–568. doi:10.1007/s00425-018-2954-2.
  • Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot. 2011;62(10):3289–3309. doi:10.1093/jxb/err030.
  • Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci. 2021;22(10):5069. doi:10.3390/ijms22105069.
  • Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D. Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front Plant Sci. 2016;6:1248. doi:10.3389/fpls.2015.01248.
  • Matilla AJ. Seed dormancy: molecular control of its induction and alleviation. Plants. 2020;9(10):1402. MDPI. doi: 10.3390/plants9101402.
  • Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62(1):25–54. doi:10.1111/jipb.12899.
  • Luo X, Chen Z, Gao J, Gong Z. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 2014;79(1):44–55. doi:10.1111/tpj.12534.
  • Zegada-Lizarazu W, Monti A. Deep root growth, ABA adjustments and root water uptake response to soil water deficit in giant reed. Ann Bot. 2019;124(4):605–615. doi:10.1093/aob/mcz001.
  • Frey A, Boutin J-P, Sotta B, Mercier R, Marion-Poll A. Regulation of carotenoid and ABA accumulation during the development and germination of nicotiana plumbaginifolia seeds. Planta. 2006;224(3):622–632. doi:10.1007/s00425-006-0231-2.
  • Bonghi C, Trainotti L, Botton A, Tadiello A, Rasori A, Ziliotto F, Zaffalon V, Casadoro G, Ramina A. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biol. 2011;11(1):1–14. doi:10.1186/1471-2229-11-107.
  • Qin X, Zeevaart JA. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 2002;128(2):544–551. doi:10.1104/pp.010663.
  • Matilla AJ, Carrillo-Barral N, Rodríguez-Gacio MDC. Rodríguez-gacio MdC: an update on the role of NCED and CYP707A ABA metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. J Plant Growth Regul. 2015;34(2):274–293. doi:10.1007/s00344-014-9464-7.
  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′‐hydroxylase. Plant J. 2006;45(6):942–954. doi:10.1111/j.1365-313X.2006.02659.x.
  • Nonogaki H. ABA responses during seed development and germination. Adv Bot Res. 2019;92:171–217.
  • Zhao H, Zhang Y, Zheng Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. Front Plant Sci. 2022;13:1000803. doi:10.3389/fpls.2022.1000803.
  • Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng YQ, Wu Y. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J. 2011;68(2):249–261. doi:10.1111/j.1365-313X.2011.04683.x.
  • Gazzarrini S, Tsai AYL, Guilfoyle T, Hagen G. Hormone cross-talk during seed germination. Essays Biochem. 2015;58:151–164. doi:10.1042/bse0580151.
  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q. et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis. PLoS Genet. 2013;9(6):e1003577. doi:10.1371/journal.pgen.1003577.
  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Y-M B, Rothstein SJ. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet. 2010;6(9):e1001098. doi:10.1371/journal.pgen.1001098.
  • Tan S-S, Jia M, Zhang X-Y, Duan A-Q, Li T, Liu Y-H, Xiong A-S. Comparative transcriptome analysis provides novel insights into phytohormone dynamic changes during seed germination in carrot (Daucus carota L.). J Hortic Sci Biotechnol. 2023;98(1):45–56. doi:10.1080/14620316.2022.2077241.
  • Matilla AJ. Auxin: hormonal signal required for seed development and dormancy. Plants. 2020;9(6):705. doi:10.3390/plants9060705.
  • Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol. 2010;2(6):a001537. doi:10.1101/cshperspect.a001537.