769
Views
0
CrossRef citations to date
0
Altmetric
Review

Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response

, , &
Article: 2329841 | Received 15 Dec 2023, Accepted 07 Mar 2024, Published online: 24 Mar 2024

References

  • Chamizo-Ampudia A, Sanz‐Luque E, Llamas Á, Ocaña‐Calahorro F, Mariscal V, Carreras A, Barroso JB, Galván A, Fernández E. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant, Cell Environ. 2016;39(10):2097–13. doi:10.1111/pce.12739.
  • Safavi-Rizi V, Herde M, Stöhr C. Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root. Sci Rep. 2020;10(1):16509. doi:10.1038/s41598-020-73613-z.
  • Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol. 2008;59(1):21–39. doi:10.1146/annurev.arplant.59.032607.092830.
  • Moreau M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants–where do we stand? Physiol Plant. 2010;138(4):372–383. doi:10.1111/j.1399-3054.2009.01308.x.
  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. Mol Plant. 2015;8(4):506–520. doi:10.1016/j.molp.2014.12.010.
  • Gupta KJ, Igamberdiev AU, Mur LAJ. NO and ROS homeostasis in mitochondria: a central role for alternative oxidase. New Phytol. 2012;195(1):1–3. doi:10.1111/j.1469-8137.2012.04189.x.
  • Mohn MA, Thaqi B, Fischer-Schrader K. Isoform-specific NO synthesis by Arabidopsis thaliana Nitrate Reductase. Plants (Basel). 2019;8(3):67. doi:10.3390/plants8030067.
  • León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant, Cell Environ. 2020;43(1):1–15. doi:10.1111/pce.13617.
  • Astier J, Gross I, Durner J. Nitric oxide production in plants: an update. J Exp Bot. 2018;69(14):3401–3411. doi:10.1093/jxb/erx420.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2.
  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–D444. doi:10.1093/nar/gkab1061.
  • Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ. Nitric oxide regulation of plant metabolism. Mol Plant. 2022;15(2):228–242. doi:10.1016/j.molp.2021.12.012.
  • León J, Castillo MC, Gayubas B, Gibbs D. The hypoxia–reoxygenation stress in plants. J Exp Bot. 2021;72(16):5841–5856. doi:10.1093/jxb/eraa591.
  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins of nitric oxide. Trends Plant Sci. 2011;16(3):160–168. doi:10.1016/j.tplants.2010.11.007.
  • Yamasaki H, Osmond CB, Foyer CH, Bock G. Nitrite–dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci. 2000;355(1402):1477–1488. doi:10.1098/rstb.2000.0708.
  • Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 2004;16(2):332–341. doi:10.1105/tpc.017822.
  • Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW. et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun. 2019;10(1):4020. doi:10.1038/s41467-019-12045-4.
  • Loreti E, Perata P. The many facets of hypoxia in plants. Plants (Basel). 2020;9(6):745. doi:10.3390/plants9060745.
  • Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, Mustroph A. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. Plant Cell. 2016;28(1):160–180. doi:10.1105/tpc.15.00866.
  • Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten H-M, Riegler H, Hoefgen R, Perata P, van Dongen JT, Licausi F. et al. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun. 2014;5(1):3425. doi:10.1038/ncomms4425.
  • Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta. 2000;210(2):215–221. doi:10.1007/PL00008128.
  • He Y, Tang R-H, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F. et al. Nitric oxide represses the Arabidopsis floral transition. Science. 2004;305(5692):1968–1971. doi:10.1126/science.1098837.
  • Hussain A, Shah F, Ali F, Yun B-W. Role of nitric oxide in plant senescence. Front Plant Sci. 2022;13:851631. doi:10.3389/fpls.2022.851631.
  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide. 2018;73:22–38. doi:10.1016/j.niox.2017.12.005.
  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol. 2009;183(4):1030–1042. doi:10.1111/j.1469-8137.2009.02899.x.
  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol. 2002;129(3):954–956. doi:10.1104/pp.004036.
  • Kwon E, Feechan A, Yun B-W, Hwang B-H, Pallas JA, Kang J-G, Loake GJ. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta. 2012;236(3):887–900. doi:10.1007/s00425-012-1697-8.
  • Astier J, Kulik, A., Koen, E., Besson-Bard, A., Bourque, S., Jeandroz, S., Lamotte, O., Wendehenne, D. Protein S-nitrosylation: What’s going on in plants? Free Radical Biol Med. 2012;53(5):1101–1110. doi:10.1016/j.freeradbiomed.2012.06.032.
  • Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y. et al. S-Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell. 2018;71(1):142–154.e6. doi:10.1016/j.molcel.2018.05.024.
  • Pande A, Mun BG, Rahim W, Khan M, Lee DS, Lee GM, Al Azzawi TNI, Hussain A, Kim CK, Yun BW. et al. Phytohormonal regulation through protein S-Nitrosylation under stress. Front Plant Sci. 2022;13:865542. doi:10.3389/fpls.2022.865542.
  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J. Understanding the fate of peroxynitrite in plant cells–from physiology to pathophysiology. Phytochemistry. 2011;72(8):681–688. doi:10.1016/j.phytochem.2011.02.025.
  • Vandelle E, Delledonne M. Peroxynitrite formation and function in plants. Plant Sci. 2011;181(5):534–539. doi:10.1016/j.plantsci.2011.05.002.
  • Rubio MC, Calvo‐Begueria L, Díaz‐Mendoza M, Elhiti M, Moore M, Matamoros MA, James EK, Díaz I, Pérez‐Rontomé C, Villar I. et al. Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid. Plant J. 2019;100(1):38–54. doi:10.1111/tpj.14422.
  • Gupta KJ, Hebelstrup KH, Mur LAJ, Igamberdiev AU. Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett. 2011;585(24):3843–3849. doi:10.1016/j.febslet.2011.10.036.
  • Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. New Phytol. 2020;227(6):1618–1635. doi:10.1111/nph.16444.
  • Begara-Morales JC, Chaki M, Valderrama R, Sánchez-Calvo B, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB. Nitric oxide buffering and conditional nitric oxide release in stress response. J Exp Bot. 2018;69(14):3425–3438. doi:10.1093/jxb/ery072.
  • Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta. 2013;51830(5):3173–3181. doi:10.1016/j.bbagen.2013.02.004.
  • Hess DT, Matsumoto A, Kim S-O, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6(2):150–166. doi:10.1038/nrm1569.
  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell. 2004;16(10):2785–2794. doi:10.1105/tpc.104.025379.
  • Liu W-Z, Kong D-D, Gu X-X, Gao H-B, Wang J-Z, Xia M, Gao Q, Tian L-L, Xu Z-H, Bao F. et al. Cytokinins can act as suppressors of nitric oxide in arabidopsis. Proc Natl Acad Sci U S A. 2013;110(4):1548–1553. doi:10.1073/pnas.1213235110.
  • Li S-M, Zheng H-X, Zhang X-S, Sui N. Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep. 2021;40(2):271–282. doi:10.1007/s00299-020-02612-1.
  • Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot. 2015;66(16):4873–4884. doi:10.1093/jxb/erv214.
  • Kieber JJ, Schaller GE. Cytokinins. Arabidopsis Book. 2014;12:e0168. doi:10.1199/tab.0063.
  • Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in arabidopsis. Front Plant Sci. 2012;3:8. doi:10.3389/fpls.2012.00008.
  • Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009;12(5):527–538. doi:10.1016/j.pbi.2009.07.002.
  • Kant S, Burch D, Badenhorst P, Palanisamy R, Mason J, Spangenberg G. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PloS One. 2015;10(1):e0116349. doi:10.1371/journal.pone.0116349.
  • Müller B, Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature. 2008;453(7198):1094–1097. doi:10.1038/nature06943.
  • Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57(1):431–449. doi:10.1146/annurev.arplant.57.032905.105231.
  • Hošek P, Hoyerová K, Kiran NS, Dobrev PI, Zahajská L, Filepová R, Motyka V, Müller K, Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in arabidopsis. New Phytol. 2020;225(6):2423–2438. doi:10.1111/nph.16310.
  • Romanov GA, Schmülling T. On the biological activity of cytokinin free bases and their ribosides. Planta. 2021;255(1):27. doi:10.1007/s00425-021-03810-1.
  • Hu Y, Shani E. Cytokinin activity – transport and homeostasis at the whole plant, cell, and subcellular levels. New Phytol. 2023;239(5):1603–1608. doi:10.1111/nph.19001.
  • Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004;45(9):1299–1305. doi:10.1093/pcp/pch132.
  • Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T. The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant Journal. 2011;67(1):157–168. doi:10.1111/j.1365-313X.2011.04584.x.
  • Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H. Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in arabidopsis. J Biol Chem. 2004;279(14):14049–14054. doi:10.1074/jbc.M314195200.
  • Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem. 2004;279(40):41866–41872. doi:10.1074/jbc.M406337200.
  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445(7128):652–655. doi:10.1038/nature05504.
  • Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res. 2003;116(3):241–252. doi:10.1007/s10265-003-0096-4.
  • Hou B, Lim E-K, Higgins GS, Bowles DJ. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem. 2004;279(46):47822–47832. doi:10.1074/jbc.M409569200.
  • Falk A, Rask L. Expression of a zeatin-O-glucoside-degrading beta-glucosidase in Brassica napus. Plant Physiol. 1995;108(4):1369–1377. doi:10.1104/pp.108.4.1369.
  • Frébort I, Šebela M, Galuszka P, Werner T, Schmülling T, Peč P. Cytokinin oxidase/cytokinin dehydrogenase assay: optimized procedures and applications. Anal Biochem. 2002;306(1):1–7. doi:10.1006/abio.2002.5670.
  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T. New insights into the biology of cytokinin degradation. Plant Biol (Stuttg). 2006;8(3):371–381. doi:10.1055/s-2006-923928.
  • Pasha A, Subramaniam S, Cleary A, Chen X, Berardini T, Farmer A, Town C, Provart N. Araport lives: an updated framework for Arabidopsis bioinformatics. Plant Cell. 2020;32(9):2683–2686. doi:10.1105/tpc.20.00358.
  • Köllmer I, Novák O, Strnad M, Schmülling T, Werner T. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. Plant Journal. 2014;78(3):359–371. doi:10.1111/tpj.12477.
  • Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK. et al. Cytokinin and abiotic stress tolerance -what has been accomplished and the way forward? Front Genet. 2022;13:943025. doi:10.3389/fgene.2022.943025.
  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23(1):69–80. doi:10.1105/tpc.110.079079.
  • Schwarz I, Scheirlinck M-T, Otto E, Bartrina I, Schmidt R-C, Schmülling T. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape. J Exp Bot. 2020;71(22):7146–7159. doi:10.1093/jxb/eraa419.
  • Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell Environ. 2019;42(3):998–1018. doi:10.1111/pce.13494.
  • Liu C-J, Zhao Y, Zhang K. Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. Front Plant Sci. 2019;10:693. doi:10.3389/fpls.2019.00693.
  • Sakakibara H. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant Journal. 2021;105(2):421–430. doi:10.1111/tpj.15011.
  • Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants. 2017;3(8):17112. doi:10.1038/nplants.2017.112.
  • Hluska T, Hlusková L, Emery RJN. The hulks and the deadpools of the cytokinin universe: a dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules. 2021;11(2):209. doi:10.3390/biom11020209.
  • Xu L, Jia W, Tao X, Ye F, Zhang Y, Ding ZJ, Zheng SJ, Qiao S, Su N, Zhang Y. et al. Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1. Nat Plants. 2024;10(1):180–191. doi:10.1038/s41477-023-01590-y.
  • Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song W-Y. et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A. 2014;111(19):7150–7155. doi:10.1073/pnas.1321519111.
  • Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu C-J. et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun. 2014;5(1):3274. doi:10.1038/ncomms4274.
  • Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, Gillissen B, Kühn C, Frommer WB. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant Journal. 2003;34(1):13–26. doi:10.1046/j.1365-313X.2003.01700.x.
  • Gillissen B, Bürkle L, André B, Kühn C, Rentsch D, Brandl B, Frommer WB. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell. 2000;12(2):291–300. doi:10.1105/tpc.12.2.291.
  • Zürcher E, Liu J, Di Donato M, Geisler M, Müller B. Plant development regulated by cytokinin sinks. Science. 2016;353(6303):1027–1030. doi:10.1126/science.aaf7254.
  • SUN J, HIROSE N, WANG X, WEN P, XUE L, SAKAKIBARA H, ZUO J. Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in Planta. J Integrative Plant Biol. 2005;47(5):588–603. doi:10.1111/j.1744-7909.2005.00104.x.
  • Korobova A, Kuluev B, Möhlmann T, Veselov D, Kudoyarova G. Limitation of cytokinin export to the shoots by nucleoside transporter ENT3 and its linkage with root elongation in Arabidopsis. Cells. 2021;10(2):350. doi:10.3390/cells10020350.
  • Tessi TM, Maurino VG, Shahriari M, Meissner E, Novak O, Pasternak T, Schumacher BS, Ditengou F, Li Z, Duerr J. et al. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. New Phytol. 2023;238(5):1924–1941. doi:10.1111/nph.18879.
  • Feng J. et al. (2013). S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat Commun. 4, 1529. doi: 10.1038/ncomms2541.
  • Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmülling T. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol. 2011;156(4):1808–1818. doi:10.1104/pp.111.180539.
  • Heyl A, Brault M, Frugier F, Kuderova A, Lindner A-C, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE. et al. Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol. 2013;161(3):1063–1065. doi:10.1104/pp.112.213207.
  • Lomin SN, Myakushina YA, Arkhipov DV, Leonova OG, Popenko VI, Schmülling T, Romanov GA. Studies of cytokinin receptor–phosphotransmitter interaction provide evidences for the initiation of cytokinin signalling in the endoplasmic reticulum. Funct Plant Biol. 2018;45(2):192–202. doi:10.1071/FP16292.
  • Romanov GA, Lomin SN, Schmülling T. Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol. 2018;218(1):41–53. doi:10.1111/nph.14991.
  • Romanov GA, Lomin SN, Rakova NY, Heyl A, Schmülling T. Does NO play a role in cytokinin signal transduction? FEBS Lett. 2008;582(6):874–880. doi:10.1016/j.febslet.2008.02.016.
  • Lehotai N, Feigl G, Koós Á, Molnár Á, Ördög A, Pető A, Erdei L, Kolbert Z. Nitric oxide–cytokinin interplay influences selenite sensitivity in Arabidopsis. Plant Cell Rep. 2016;35(10):2181–2195. doi:10.1007/s00299-016-2028-5.
  • Shen Q, Wang Y-T, Tian H, Guo F-Q. Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. Mol Plant. 2013;6(4):1214–1225. doi:10.1093/mp/sss148.
  • Tun NN, Holk A, Scherer GF. Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett. 2001;509(2):174–176. doi:10.1016/S0014-5793(01)03164-7.
  • Yan Y, Shi Q, Gong B. S-nitrosoglutathione reductase-mediated nitric oxide affects axillary buds outgrowth of Solanum lycopersicum L. by regulating auxin and cytokinin signaling. Plant Cell Physiol. 2021;62(3):458–471. doi:10.1093/pcp/pcab002.
  • Islam MR, Rahman MM, Mohi-Ud-Din M, Akter M, Zaman E, Keya SS, Hasan M, Hasanuzzaman M. Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean (Vigna radiata L. Wilczek). PeerJ. 2022;10:e12862. doi:10.7717/peerj.12862.
  • Le Huynh N, Vantoai T, Streeter J, Banowetz G. Regulation of flooding tolerance of SAG12: ipt Arabidopsis plants by cytokinin. J Exp Bot. 2005;56(415):1397–1407. doi:10.1093/jxb/eri141.
  • Terrile MC, París R, Calderón‐Villalobos LIA, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis Transport Inhibitor Response 1 auxin receptor. Plant Journal. 2012;70(3):492–500. doi:10.1111/j.1365-313X.2011.04885.x.
  • Qi L, Friml J. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytol. 2023;240(2):489–495. doi:10.1111/nph.19123.
  • Chen H, Li L, Zou M, Qi L, Friml J. Distinct functions of TIR1 and AFB1 receptors in auxin signaling. Mol Plant. 2023;16(7):1117–1119. doi:10.1016/j.molp.2023.06.007.
  • Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, Zou M, Del Genio CI, Kubeš MF, Napier R, Jaworski K. et al. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022;611(7934):133–138. doi:10.1038/s41586-022-05369-7.
  • Fu Y-F, Zhang Z-W, Yang X-Y, Wang C-Q, Lan T, Tang X-Y, Chen G-D, Zeng J, Yuan S. Nitrate reductase is a key enzyme responsible for nitrogen-regulated auxin accumulation in Arabidopsis roots. Biochem Biophys Res Commun. 2020;532(4):633–639. doi:10.1016/j.bbrc.2020.08.057.
  • Martínez-Medina A, Pescador L, Terrón-Camero LC, Pozo MJ, Romero-Puertas MC, Brouquisse R. Nitric oxide in plant–fungal interactions. J Exp Bot. 2019;70(17):4489–4503. doi:10.1093/jxb/erz289.
  • Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J Exp Bot. 2015;66(16):4885–4896. doi:10.1093/jxb/erv297.
  • Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases. J Exp Bot. 2016;67(14):4015–4037. doi:10.1093/jxb/erw216.
  • Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot. 1997;48(307):181–199. doi:10.1093/jxb/48.2.181.
  • Sade N, Del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E. Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot. 2018;69(4):845–853. doi:10.1093/jxb/erx235.
  • Woo HR, Masclaux-Daubresse C, Lim PO. Plant senescence: how plants know when and how to die. J Exp Bot. 2018;69(4):715–718. doi:10.1093/jxb/ery011.
  • Cortleven A, Marg I, Yamburenko MV, Schlicke H, Hill K, Grimm B, Schaller GE, Schmülling T. Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiol. 2016;172(1):464–478. doi:10.1104/pp.16.00640.
  • Cortleven A, Nitschke S, Klaumünzer M, AbdElgawad H, Asard H, Grimm B, Riefler M, Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. Plant Physiol. 2014;164(3):1470–1483. doi:10.1104/pp.113.224667.
  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. Plant Journal. 2022;109(2):373–389. doi:10.1111/tpj.15483.