921
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience

, ORCID Icon & ORCID Icon
Article: 2329842 | Received 26 Dec 2023, Accepted 06 Mar 2024, Published online: 17 Mar 2024

References

  • International Blueberry Organization. Global state of the blueberry industry report. Brazelton C, ed., 2023.
  • Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot. 2007;61(3):199–13. doi:10.1016/j.envexpbot.2007.05.011.
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021;10(2):259. doi:10.3390/plants10020259.
  • Retamales JB, Hancock JF. Blueberries. Cabi. 2018.
  • Medina RB, Cantuarias-Avilés TE, Angolini SF, Silva SRd. Performance of ‘Emerald’ and ‘jewel’ blueberry cultivars under no-chill incidence. Pesqui Agropecu Trop. 2018;48:147–152. doi:10.1590/1983-40632018v4852093.
  • Lyrene P. Development of highbush blueberry cultivars adapted to Florida. J Am Pomol Soc. 2002;56:79–85.
  • Watkinson SC. Chapter 7 – mutualistic symbiosis between fungi and autotrophs. In: Watkinson S, Boddy L Money N. editors. The fungi. (Third Edition). Boston: Academic Press; 2016. pp. 205–243.
  • Cullings KW. Single phylogenetic origin of ericoid mycorrhizae within the ericaceae. Can J Bot. 1996;74(12):1896–909. doi:10.1139/b96-227.
  • Vohník M, Réblová M. Fungi in hair roots of Vaccinium spp. (ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. Mycorrhiza. 2023;33(1–2):69–86. doi:10.1007/s00572-023-01101-z.
  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (ericaceae). Am J Bot. 2008;95(12):1506–14. doi:10.3732/ajb.0800092.
  • Kamran M, Imran QM, Ahmed MB, Falak N, Khatoon A, Yun B-W. Endophyte-mediated stress tolerance in plants: a sustainable strategy to enhance resilience and assist crop improvement. Cells. 2022;11(20):3292. doi:10.3390/cells11203292.
  • Ważny R, Jędrzejczyk RJ, Rozpądek P, Domka A, Turnau K. Biotization of highbush blueberry with ericoid mycorrhizal and endophytic fungi improves plant growth and vitality. Appl Microbiol Biotechnol. 2022;106(12):4775–86. doi:10.1007/s00253-022-12019-5.
  • Mu D, Du N, Zwiazek JJ. Inoculation with ericoid mycorrhizal associations alleviates drought stress in lowland and upland velvetleaf blueberry (Vaccinium myrtilloides) seedlings. Plants. 2021;10(12):2786. doi:10.3390/plants10122786.
  • Scagel CF. Inoculation with ericoid mycorrhizal fungi alters fertilizer use of highbush blueberry cultivars. HortScience. 2005;40(3):786–94. doi:10.21273/HORTSCI.40.3.786.
  • de Silva A, Patterson K, Rothrock C, Moore J. Growth promotion of highbush blueberry by fungal and bacterial inoculants. HortScience. 2000;35(7):1228–30. doi:10.21273/HORTSCI.35.7.1228.
  • Contreras-Pérez M, Hernández-Salmerón J, Rojas-Solís D, Rocha-Granados C, Orozco-Mosqueda M, Parra-Cota FI, de Los Santos-Villalobos S, Santoyo G. Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry (Vaccinium spp. var. Biloxi) growth-promoting bacterium. 3 Biotech. 2019;9(10):1–6. doi:10.1007/s13205-019-1911-5.
  • Yu YY, Xu JD, Huang TX, Zhong J, Yu H, Qiu JP, Guo JH. Combination of beneficial bacteria improves blueberry production and soil quality. Food Sci Nutr. 2020;8:5776–84. doi:10.1002/fsn3.1772.
  • Chacón FI, Sineli PE, Mansilla FI, Pereyra MM, Diaz MA, Volentini SI, Poehlein A, Meinhardt F, Daniel R, Dib JR. et al. Native cultivable bacteria from the blueberry microbiome as novel potential biocontrol agents. Microorganisms. 2022;10(5):969. doi:10.3390/microorganisms10050969.
  • Rad AK, Zarei M, Astaikina A, Streletskii R, Etesami H. Chapter 1 - effects of microbial inoculants on growth, yield, and fruit quality under stress conditions. In: Seymen M, Kurtar E, Erdinc C, and Kumar A. editors. Sustainable Horticulture : Microbial Inoculants and Stress Interaction. London: Academic Press; 2022. p. 1–38.
  • Liu C, Callow P, Rowland LJ, Hancock JF, Song G-q. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars. Plant Cell, Tissue Organ Culture (PCTOC). 2010;103(1):137–144. doi:10.1007/s11240-010-9755-z.
  • Wang Y, Chen C, Li K. The establishment of the plantlet production of rabbiteye blueberry through tissue culture from in vitro derived leaf explants. J Taiwan Soc Hortic Sci. 2014;60:51–63.
  • Cappai F, Amadeu RR, Benevenuto J, Cullen R, Garcia A, Grossman A, Ferrão LFV, Munoz P. High-resolution linkage map and QTL analyses of fruit firmness in autotetraploid blueberry. Front Plant Sci. 2020;11:562171. doi:10.3389/fpls.2020.562171.
  • Cappelletti R, Sabbadini S, Mezzetti B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci Hortic (Amsterdam). 2016;207:117–24. doi:10.1016/j.scienta.2016.05.016.
  • Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E. et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot. 2011;62(8):2827–40. doi:10.1093/jxb/erq457.
  • Fan S, Jian D, Wei X, Chen J, Beeson RC, Zhou Z, Wang X. Micropropagation of blueberry ‘bluejay’ and ‘pink lemonade’ through in vitro shoot culture. Sci Hortic (Amsterdam). 2017;226:277–84. doi:10.1016/j.scienta.2017.08.052.
  • Li Q, Yu P, Lai J, Gu M. Micropropagation of the potential blueberry rootstock—vaccinium arboreum through axillary shoot proliferation. Sci Hortic (Amsterdam). 2021;280:109908. doi:10.1016/j.scienta.2021.109908.
  • Pacholczak A, Nowakowska K. The ex vitro rooting of blueberry (Vaccinium corymbosum L.) microcuttings. Folia Hortic. 2015;27(2):145–150. doi:10.1515/fhort-2015-0024.
  • Lin L-C, Lee M-J, Chen J-L. Resynthesis of ericoid mycorrhizae in Formosan rhododendron (rhododendron formosanum hemsl.) with an endophytic cryptosporiopsis species. Taiwan J For Sci. 2011;26:245–254.
  • Lin L, Lin C, Lin W, Tung Y, Wu J. Effects of ericoid mycorrhizal fungi or dark septate endophytic fungi on the secondary metabolite of rhododendron pseudochrysanthum (R. Morii) seedlings. Appl Ecol Environ Res. 2021;19(2):1221–1232. doi:10.15666/aeer/1902_12211232.
  • Lin L-C, Lin W-R, Hsu Y-C, Pan H-Y. Influences of three oidiodendron maius isolates and two inorganic nitrogen sources on the growth of rhododendron kanehirae. 2020;38(5):742–753. doi:10.7235/HORT.20200067.
  • Gagnon J, Langlois C, Bouchard D, Tacon FL. Growth and ectomycorrhizal formation of container-grown Douglas-fir seedlings inoculated with laccaria bicolor under four levels of nitrogen fertilization. Can J For Res. 1995;25(12):1953–61. doi:10.1139/x95-210.
  • Lin L-C, Chen H-Y, Lin W-R. Fostering growth in Cinnamomum kanehirae cuttings: the beneficial role of dark septate endophytes in forest nursery management. Forests. 2023;15(1):16. doi:10.3390/f15010016.
  • Chan TH, Rho H, Ariyawansa HA. The effects of plant growth-promoting bacteria on the physiological properties, nutrition contents and growth performance in lettuce under heat-stress conditions. International Horticultural Congress; August 14-20; Angers, France; 2022. https://app.ihc2022.org/event/ihc-2022/planning/UGxhbm5pbmdfOTYxMzQ4
  • Celik H, Odabas MS, Odabas F. Leaf area prediction models for highbush blueberries (Vaccinium corymbosum L.) from linear measurements. Adv Food Sci. 2011;33:16–21.
  • Junglee S, Urban L, Sallanon H, Lopez-Lauri F. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am J Anal Chem. 2014;5(11):730–736. doi:10.4236/ajac.2014.511081.
  • Ozden M, Demirel U, Kahraman A. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci Hortic (Amsterdam). 2009;119(2):163–8. doi:10.1016/j.scienta.2008.07.031.
  • Core-Team R-. R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria; 2021.
  • Atkin OK, Tjoelker MG. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 2003;8(7):343–51. doi:10.1016/S1360-1385(03)00136-5.
  • Taiz L, Zeiger E, Møller IM, Murphy A. Plant physiology and development. New York, United States of America: Sinauer Associates Incorporated; 2015.
  • Auge RM, Toler HD, Saxton AM. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 2015;25(1):13–24. doi:10.1007/s00572-014-0585-4.
  • Wei X, Chen J, Zhang C, Liu H, Zheng X, Mu J. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Hortic Res. 2020;7(1):140. doi:10.1038/s41438-020-00361-6.
  • Wei X, Zhang W, Zulfiqar F, Zhang C, Chen J. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Front Plant Sci. 2022;13:1027390. doi:10.3389/fpls.2022.1027390.
  • Gavito ME, Olsson PA, Rouhier H, Medina-Peñafiel A, Jakobsen I, Bago A, Azcón‐Aguilar C. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol. 2005;168(1):179–188. doi:10.1111/j.1469-8137.2005.01481.x.
  • Kilpeläinen J, Aphalo PJ, Lehto T. Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in Populus angustifolia seedlings more than a mild drought. Soil Biol Biochem. 2020;146:107798. doi:10.1016/j.soilbio.2020.107798.
  • Rho H, Epps VV, Wegley N, Doty SL, Kim S-H. Salicaceae endophytes modulate stomatal behavior and increase water use efficiency in rice. Front Plant Sci. 2018;9:188. doi:10.3389/fpls.2018.00188.
  • Bharath P, Gahir S, Raghavendra AS. Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front Plant Sci. 2021;12:615114. doi:10.3389/fpls.2021.615114.
  • Kudoyarova G, Arkhipova T, Veselov D. Water relations in plants treated with growth promoting rhizosphere bacteria. Plant Soil. 2024;494(1–2):51–72. doi:10.1007/s11104-023-06270-6.
  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot. 2017;136:68–77. doi:10.1016/j.envexpbot.2017.01.010.
  • Rho H, Doty SL, Kim SH. Estimating microbial respiratory CO2 from endophytic bacteria in rice. Plant Signal Behav. 2018;13:e1500067. doi:10.1080/15592324.2018.1500067.
  • Rho H, Doty SL, Kim SH, Foyer C. Endophytes alleviate the elevated CO2-dependent decrease in photosynthesis in rice, particularly under nitrogen limitation. J Exp Bot. 2020;71(2):707–18. doi:10.1093/jxb/erz440.
  • Woodward C, Hansen L, Beckwith F, Redman RS, Rodriguez RJ. Symbiogenics: an epigenetic approach to mitigating impacts of climate change on plants. HortScience. 2012;47(6):699–703. doi:10.21273/HORTSCI.47.6.699.
  • Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SED. et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants. 2021;10(5):935. doi:10.3390/plants10050935.
  • Galicia-Campos E, Ramos-Solano B, Montero-Palmero MB, Gutierrez-Mañero FJ, García-Villaraco A. Management of plant physiology with beneficial bacteria to improve leaf bioactive profiles and plant adaptation under saline stress in Olea europea L. Foods. 2020;9(1):57. doi:10.3390/foods9010057.
  • Vitale L, Vitale E, Francesca S, Lorenz C, Arena C. Plant-growth promoting microbes change the photosynthetic response to light quality in spinach. Plants. 2023;12(5):1149. doi:10.3390/plants12051149.
  • Hennecke H, Shanmugam KT. Temperature control of nitrogen fixation in Klebsiella pneumoniae. Arc Microbiol. 1979;123(3):259–265. doi:10.1007/BF00406659.
  • Gavito ME, Jakobsen I, Mikkelsen TN, Mora F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol. 2019;223(2):896–907. doi:10.1111/nph.15806.
  • Lambers H, Chapin FS, Pons TL. Plant physiological ecology. New York, United States of America: Springer; 2008.
  • Atkinson D, Berta G, Hooker JE. Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S Schüepp H. editors. Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Basel: Birkhäuser Basel; 1994. p. 89–99.
  • de Vries J, Evers JB, Kuyper TW, van Ruijven J, Mommer L. Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol. 2021;231(3):1171–82. doi:10.1111/nph.17435.
  • Hetrick BAD. Mycorrhizas and root architecture. Experientia. 1991;47(4):355–62. doi:10.1007/BF01972077.
  • Hatfield JL, Dold C. Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci. 2019;10:103. doi:10.3389/fpls.2019.00103.
  • Caine RS, Yin X, Sloan J, Harrison EL, Mohammed U, Fulton T, Biswal AK, Dionora J, Chater CC, Coe RA. et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 2019;221(1):371–84. doi:10.1111/nph.15344.
  • Hamilton CE, Gundel PE, Helander M, Saikkonen K. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers. 2012;54(1):1–10. doi:10.1007/s13225-012-0158-9.
  • Ntoukakis V, Gifford ML. Plant–microbe interactions: tipping the balance. J Exp Bot. 2019;70(18):4583–5. doi:10.1093/jxb/erz321.
  • Rowland L, Ramirez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. New Phytol. 2023;239(4):1173–89. doi:10.1111/nph.19000.
  • Li H, Smith FA, Dickson S, Holloway RE, Smith SE. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol. 2008;178(4):852–62. doi:10.1111/j.1469-8137.2008.02410.x.