573
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Quasi-targeted metabolomics revealed isoliquiritigenin and lauric acid associated with resistance to tobacco black shank

, , , , &
Article: 2332019 | Received 26 Nov 2023, Accepted 22 Jan 2024, Published online: 25 Mar 2024

References

  • Panabieres F, Ali GS, Allagui MB, Dalio RJ, Gudmestad NC, Kuhn ML, Guha Roy S, Schena L, Zampounis A. Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathol Mediterr. 2016;55(1):20–10. doi:10.14601/Phytopathol_Mediterr-16423.
  • Bai G, Fang DH, Yang DH, Tong Z-J, Chen X-J, Fei M-L, Gong J-L, Xie H, Xiao B-G. Transcriptomics and iTRAQ-proteomics analyses provide novel insights into the defense mechanism of black shank disease in tobacco. Front Plant Sci. 2022;13:991074. doi:10.3389/fpls.2022.991074.
  • Zhang CS, Feng C, Zheng YF, Wang J, Wang F. Root exudates metabolic profiling suggests distinct defense mechanisms between resistant and susceptible tobacco cultivars against black shank disease. Front Plant Sci. 2020a;11(11):559775. doi:10.3389/fpls.2020.559775.
  • Zhang CS, Zheng YF, Peng LJ, Cao J. Rootstock-scion interaction affects the composition and pathogen inhibitory activity of tobacco (Nicotiana tabacum L.) root exudates. Plants (Basel). 2020b;9(12):1652. doi:10.3390/plants9121652.
  • Jing CL, Gou JY, Han XB, Wu Q, Zhang C. In vitro and in vivo activities of eugenol against tobacco black shank caused by phytophthora nicotianae. Pestic Biochem Physiol. 2017;142:148–154. doi:10.1016/j.pestbp.2017.07.001.
  • Gallup CA, McCorkle KL, Ivors KL, Shew D. Characterization of the black shank pathogen, Phytophthora nicotianae , across North Carolina tobacco production areas. Plant Dis. 2018;102(6):1108–1114. doi:10.1094/PDIS-02-17-0295-RE.
  • Jiao Q, Deng JH, Zhao XY, Yao X, Li M, Pei Z, Li X, Jiang X, Zhang F. Physiological and biochemical regulation of tobacco by oxathiapiprolin under Phytophthora nicotianae infection. Physiol Plant. 2023;175(2):e13891. doi:10.1111/ppl.13891.
  • Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, Li A, Fu J, Ni J. et al. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol. 2022;13:1051730. doi:10.3389/fmicb.2022.1051730.
  • Iqbal M, Jützeler M, França SC, Wäckers F, Andreasson E, Stenberg JA. Bee-vectored Aureobasidium pullulans for biological control of gray mold in strawberry. Phytopathology®. 2022;112(2):232–237. doi:10.1094/PHYTO-05-21-0205-R.
  • Zeng J, Nifong J, Liu Y, Huang CJ, Fang DH, Lewis RS, Li YP. Evaluating diverse systems of tobacco genetic resistance to Phytophthora nicotianae in Yunnan, China. null. 2019;68(9):1616–1623. doi:10.1111/ppa.13091.
  • Sun MM, Li L, Wang CD. et al. Naringenin confers defence against Phytophthora nicotianae through antimicrobial activity and induction of pathogen resistance in tobacco. Mol Plant Pathol. 2022;23(12):1737–1750. doi:10.1111/mpp.13255.
  • Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Perez-Alfocea F. Unravelling rootstock×scion interactions to improve food security. J Exp Bot. 2015;66(8):2211–2226. doi:10.1093/jxb/erv027.
  • Kundariya H, Yang XD, Morton K, Sanchez R, Axtell MJ, Hutton SF, Fromm M, Mackenzie SA. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat Commun. 2020;11(1):5343. doi:10.1038/s41467-020-19140-x.
  • Sullivan MJ, Melton TA, Shew HD. Managing the race structure of Phytophthora parasitica var. nicotianae with cultivar rotation. Plant Dis. 2005;89(12):1285–1294. doi:10.1094/PD-89-1285.
  • Elshafie HS, Camele I, Mohamed AA. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int J Mol Sci. 2023;24(4):3266. doi:10.3390/ijms24043266.
  • Li JJ, Sang M, Jiang YT, Wei J, Shen Y, Huang Q, Li Y, Ni J. Polyene-producing streptomyces spp. From the fungus-growing termite Macrotermes barneyi exhibit high inhibitory activity against the antagonistic fungus Xylaria. Front Microbiol. 2021;12:649962. doi:10.3389/fmicb.2021.649962.
  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K. Role of secondary metabolites in plant defense against pathogens. Microb Pathog. 2018;124:198–202. doi:10.1016/j.micpath.2018.08.034.
  • Yazaki K, Arimura GI, Ohnishi T. ‘Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles. Plant Cell Physiol. 2017;58(10):1615–1621. doi:10.1093/pcp/pcx123.
  • Trindade LA, Cordeiro LV, de FiguerêFiguerêDo Silva D, Figueiredo PTR, de Pontes MLC, de Oliveira Lima E, de Albuquerque Tavares Carvalho A. The antifungal and antibiofilm activity of Cymbopogon nardus essential oil and citronellal on clinical strains of Candida albicans. Braz J Microbiol. 2022;53(3):1231–1240. doi:10.1007/s42770-022-00740-2.
  • Liang WL, Cheng JL, Zhang JD, Xiong Q, Jin M, Zhao J. pH-responsive on-demand alkaloids release from core–shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial Wilt Disease. Acs Nano. 2022;16(2):2762–2773. doi:10.1021/acsnano.1c09724.
  • Chripkova M, Zigo F, Mojzis J. Antiproliferative effect of indole Phytoalexins. Molecules. 2016;21(12):1626. doi:10.3390/molecules21121626.
  • Adobor S, Banniza S, Vandenberg A, Purves RW. Untargeted profiling of secondary metabolites and phytotoxins associated with stemphylium blight of lentil. Planta. 2023;257(4):73. doi:10.1007/s00425-023-04105-3.
  • Klassen A, Faccio AT, Canuto GA, da Cruz PL, Ribeiro HC, Tavares MF, Sussulini A. Metabolomics: definitions and significance in systems biology. Adv Exp Med Biol. 2017;965:3–17. doi:10.1007/978-3-319-47656-8_1.
  • Shi SJ, Zha WJ, Yu XY, Wu Y, Li S, Xu H, Li P, Li C, Liu K, Chen J. et al. Integrated transcriptomics and metabolomics analysis provide insight into the resistance response of rice against brown planthopper. Front Plant Sci. 2023;14:1213257. doi:10.3389/fpls.2023.1213257.
  • Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32. doi:10.1038/nprot.2012.135.
  • Luo P, Dai W, Yin P, Zeng Z, Kong H, Zhou L, Wang X, Chen S, Lu X, Xu G. et al. Multiple reaction monitoring-ion pair finder: a systematic approach to transform nontargeted mode to pseudotargeted mode for metabolomics study based on liquid chromatography–mass spectrometry. Anal Chem. 2015;87(10):5050–5055. doi:10.1021/acs.analchem.5b00615.
  • Wen B, Mei ZL, Zeng CW, Liu S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinf. 2017;18(1):183. doi:10.1186/s12859-017-1579-y.
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4. doi:10.1038/nature07762.
  • Ren GD, Wang GF, Ma Y. Research progress on relationship between plant root exudates and soil-borne diseases. Soil. 2021;53(2):229–235. doi:10.13758/j.cnki.tr.2021.02.002.
  • Zhou BL, Chen ZX, Du L, Xie YH, Zhang Q, Ye XL. Allelopathy of root exudates from different resistant eggplants to verticillium dahliae and the identification of allelochemicals. Afr J Biotechnol. 2011;10(42):8284–8290. doi:10.5897/AJB10.2300.
  • Schalchli H, Pardo F, Hormazábal E, Palma R, Guerrero J, Bensch E. Antifungal activity of wheat root exudate extracts on Gaeumannomyces graminis var. Tritici growth. J Soil Sci Plant Nutr. 2012;12(2):329–337. doi:10.4067/S0718-95162012000200012.
  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany. 2014;92(4):267–275. doi:10.1139/cjb-2013-0225.
  • Strehmel N, Böttcher C, Schmidt S, Scheel D. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry. 2014;108:35–46. doi:10.1016/j.phytochem.2014.10.003.
  • Lucini L, Colla G, Miras Moreno MB, Bernardo L, Cardarelli M, Terzi V, Bonini P, Rouphael Y. Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates[J]. Phytochemistry. 2019;157:158–167. doi:10.1016/j.phytochem.2018.10.033.
  • Kachroo A, Kachroo P. Fatty Acid–Derived Signals in Plant Defense. Annu Rev Phytopathol. 2009;47(1):153–176. doi:10.1146/annurev-phyto-080508-081820.
  • Liang CH, Gao WT, Ge T, Tan X, Wang J, Liu H, Wang Y, Han C, Xu Q, Wang Q. et al. Lauric acid is a potent biological control agent that damages the cell membrane of Phytophthora sojae. Front Microbiol. 2021;12:666761. doi:10.3389/fmicb.2021.666761.
  • Xing JS, Chin CK. Modification of fatty acids in eggplant affects its resistance to Verticillium dahliae. Physiol Mol Plant Pathol. 2000;56(5):217–225. doi:10.1006/pmpp.2000.0268.
  • Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 2004;163(3):459–480. doi:10.1111/j.1469-8137.2004.01130.x.
  • Haichar FZ, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions below ground. Soil Biol Biochem. 2014;77(7):69–80. doi:10.1016/j.soilbio.2014.06.017.
  • Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019;299:125124. doi:10.1016/j.foodchem.2019.125124.
  • Zhang Z, Chen WQ, Zhang SQ, Bai J-X, Liu B, Yung KKL, Ko JKS. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine. 2022;106:154406. doi:10.1016/J.PHYMED.2022.154406.
  • Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res: PTR. 2008;22(6):709–724. doi:10.1002/ptr.2362.
  • Wang HJ, Jia X, Zhang MQ, Cheng C, Liang X, Wang X, Xie F, Wang J, Yu Y, He Y. et al. Isoliquiritigenin inhibits virus replication and virus-mediated inflammation via NRF2 signaling. Phytomedicine. 2023;114:154786. doi:10.1016/j.phymed.2023a.154786.
  • Wang ZY, Li WJ, Wang X, Zhu Q, Liu L, Qiu S, Zou L, Liu K, Li G, Miao H. et al. Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells. Chin Med J (Engl). 2023b;136(18):2210–2220. doi:10.1097/CM9.0000000000002675.
  • Chen J, Li Y, Yang LQ, Li Y-Z, Nan Z-B, Gao K. Biological activities of flavonoids from pathogenic-infected Astragalus adsurgens. Food Chem. 2012;131(2):546–551. doi:10.1016/j.foodchem.2011.09.021.