642
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Common bean under different water availability reveals classifiable stimuli-specific signatures in plant electrome

, , , , &
Article: 2333144 | Received 19 Dec 2023, Accepted 30 Jan 2024, Published online: 28 Mar 2024

References

  • Sheperd VA. From semi-conductors to the rhythms of sensitive plants: the research of J. C Bose Cell Mol Biol. 2005;51:607–17. doi:10.1170/T670.
  • Shepherd VA. At the roots of plant neurobiology. In: Volkov A. editor. Plant electrophysiology. Berlin, Heidelberg: Springer-Verlag; 2012. pp. 3–43.
  • Stahlberg R. Historical introduction to plant electrophysiology. In: Volkov A. editor Plant electrophysiology: theory and methods. Berlin, Germany: Springer-Verlag; 2006a. pp. 3–14.
  • Stahlberg R. Historical overview on plant neurobiology. Plant Signal Behav. 2006b;1(1):6–8. doi:10.4161/psb.1.1.2278.
  • Volkov AG. Plant electrophysiology: theory and methods. Berlin, Germany: Springer-Verlag; 2006.
  • Hedrich R, Salvador-Recatalà V, Dreyer I. Electrical wiring and long-distance plant communication. Trends Plant Sci. 2016;21(5):376–387. doi:10.1016/j.tplants.2016.01.016.
  • Fromm J, Lautner S. Electrical signals and their physiological significance in plants. Plant, Cell & Environ. 2007;30(3):249–257. doi:10.1111/j.1365-3040.2006.01614.x.
  • Huber AE, Bauerle. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. J Exp Bot. 2016;67(7):2063–2079. doi:10.1093/jxb/erw099.
  • Vodeneev VA, Katicheva LA, Sukhov VS. Electrical signals in higher plants: mechanisms of generation and propagation. Biophysics. 2016;61(3):505–512. doi:10.1134/S0006350916030209.
  • Yan X, Wang Z, Huang L, Wang C, Hou R, Xu Z, Qiao X. Research progress on electrical signals in higher plants. Progr Nat Sci. 2009;19(5):531–541. doi:10.1016/j.pnsc.2008.08.009.
  • Baluška F, Mancuso S. Ion channels in plants: from bioelectricity, via signaling to behavioral actions. Plant Signal Behav. 2013a;8(1):e23009. doi:10.4161/psb.23009.
  • Canales J, Henriquez-Valencia C, Brauchi S. The integration of electrical signals originating in the root of vascular plants. Front Plant Sci. 2018;8:2173. doi:10.3389/fpls.2017.02173.
  • Choi W-G, Miller G, Wallace I, Harper J, Mittler R, Gilroy S. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant Journal. 2017;90(4):698–707. doi:10.1111/tpj.13492.
  • Gilroy S, Białasek M, Suzuki N, Gorecka M, Devireddy AR, S K, Mittler R. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 2016;171(3):1606–1615. doi:10.1104/pp.16.00434.
  • Gallé A, Lautner S, Flexas J, Ribas-Carbo M, Hanson D, Roesgen J, Feomm J. Photosynthetic responses of soybean (glycine max L.) to heat-induced electrical signalling are predominantly governed by modifications of mesophyll conductance for CO2. Plant, Cell & Environ. 2012;36(3):542–552. doi:10.1111/j.1365-3040.2012.02594.x.
  • Sukhov V, Orlova L, Mysyagin S, Sinitsina J, Vodeneev V. Analysis of the photosynthetic response induced by variation potential in geranium. Planta. 2012;235(4):703–712. doi:10.1007/s00425-011-1529-2.
  • Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant, Cell & Environ. 2014;37(11):2532–2541. doi:10.1111/pce.12321.
  • Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V. Variation potential influence on photosynthetic cyclic electron flow in pea. Front Plant Sci. 2015;5:766. doi:10.3389/fpls.2014.00766.
  • Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol. 2017;8:8. doi:10.3389/fphys.2017.00684.
  • Grams TE, Koziolek C, Lautner S, Matyssek R, Fromm J. Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in zea mays L. Plant, Cell & Environ. 2007;30(1):79–84. doi:10.1111/j.1365-3040.2006.01607.x.
  • Van Sambeek JW, Pickard BG, Ulbright CE. Mediation of rapid electrical metabolic transpirational and photosynthetic changes by factors released from wounds. Part 2: mediation of the variation potential by riccas factor. Can J Bot. 1976;54:2651–2661. doi:10.1139/b76-285.
  • Gensler W. Bioelectric potentials and their relation to growth in higher plants. Ann N Y Acad Sci. 1974;238(1):280–299. doi:10.1111/j.1749-6632.1974.tb26797.x.
  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R. Cytosolic abscisic acid activates guard cell anion channels without preceding Ca 2+ signals. Proc Natl Acad Sci USA. 2005;143(11):4203–4208. doi:10.1073/pnas.0500146102.
  • Herde O, Fuss H, Pena-Cortes H, Fisahn J. Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol. 1995;36:737–742. doi:10.1093/OXFORDJOURNALS.PCP.A078816.
  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ. Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature. 1992;360(6399):62–65. doi:10.1038/360062a0.
  • Haake O. Über die Ursachen elektrischer Ströme in Pflanzen. Flora. 1892;75:455–487.
  • Weisenseel MH, Nuccitelli R, Jaffe L. Large electrical currents traverse growing pollen tubes. J Cell Biol. 1975;66(3):556–567. doi:10.1083/jcb.66.3.556.
  • Weisenseel MH, Dorn A, Jaffe L. Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 1979;64(3):512–518. doi:10.1104/pp.64.3.512.
  • Nobel PS. Physicochemical & environmental plant physiology. 2nd ed. San Diego: Academic press; 1999.
  • de Toledo GRA, Parise AG, Simmi FZ, Costa AVL, Senko LGS, Debono M-W, Souza GM. Plant electrome: the electrical dimension of plant life. Theor Exp Plant Physiol. 2019;31(1):21–46. doi:10.1007/s40626-019-00145-x.
  • Hedrich R. Ion channels in plants. Physiol Rev. 2012;92(4):1777–1811. doi:10.1152/physrev.00038.2011.
  • de Loof A. The cell’s self-generated “electrome”: the biophysical essence of the immaterial dimension of life? Communicative & Integrative Biology. 2016;1(5):e1197446. doi:10.1080/19420889.2016.1197446.
  • Souza GM, Ferreira AS, Saraiva GFR, Toledo GRA. Plant “electrome” can be pushed toward a self-organized critical state by external cues: evidences from a study with soybean seedlings subject to different environmental conditions. Plant Signal Behav. 2017;12(3):e1290040. doi:10.1080/15592324.2017.1290040.
  • Saraiva GFR, Ferreira AS, Souza GM, Thiel G. Osmotic stress decreases complexity underlying the electrophysiological dynamic in soybean. Plant Biol J. 2017;19(5):702–708. doi:10.1111/plb.12576.
  • Antunes IF, Silveira EP, da Silva HT. Novas Cultivares BRS Expedito: nova cultivar de feijão de grãos pretos. Pesq Agropec Bras. 2007;42(1):135–136. doi:10.1590/S0100-204X2007000100019.
  • Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Calif Agric Exp Stn. 1938;347:1–39.
  • Gensler W, Diaz-Munoz F. Simultaneous stem diameter expansions and apoplastic electropotential variations following irrigation or rainfall in cotton 1. Crop Sci. 1983;23(5):920–923. doi:10.2135/cropsci1983.0011183X002300050025x.
  • Gensler W, Yan T-L. Investigation of the causative reactant of the apoplast electropotentials of plants. J Electrochem Soc Electrochem Sci Tech. 1998;135(12):2991–2995. doi:10.1149/1.2095475.
  • Zimmermann U, Bitter R, Marchiori PER, Rüger S, Ehrenberger W, Sukhorukov VL, Schüttler A, Ribeiro RV. A non-invasive plant-based probe for continuous monitoring of water stress in real time: a new tool for irrigation scheduling and deeper insight into drought and salinity stress physiology. Theor Exp Plant Physiol. 2013;25(1):2–11. doi:10.1590/S2197-00252013000100002.
  • Pereira DR, Papa JP, Saraiva GFR, Souza GM. Automatic classification of plant electrophysiological responses to environmental stimuli using machine learning and interval arithmetic. Comput Electron Agric. 2018;145:35–42. doi:10.1016/j.compag.2017.12.024.
  • Simmi FZ, Dallagnol LJ, Ferreira AS, Pereira DR, Souza GM. Electrome alterations in a plant-pathogen system: toward early diagnosis. Bioelectrochemistry. 2020;133:107493. doi:10.1016/j.bioelechem.2020.107493.
  • Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng K-H, Suri JS. Automated diagnosis of epileptic EEG using entropies. Biomedical Signal Processing And Control. 2012;7(4):401–408. doi:10.1016/j.bspc.2011.07.007.
  • Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999;10(5):988–999. doi:10.1109/72.788640.
  • Haykin S. Neural networks: a comprehensive foundation. 2nd ed. Upper Saddle River, N.J: Prentice Hall; 1999.
  • Ho KK, Moody GB, Peng CK, Mietus JE, Larson MG, Levy D, Goldberger AL. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation. 1997;96(3):842–848. doi:10.1161/01.cir.96.3.842.
  • Gagliano M, Vyazovskiy VV, Borbély AA, Grimonprez M, Depczynski M. Learning by association in plants. Sci Rep. 2016;6(1):38427. doi:10.1038/srep38427.
  • Gallé A, Lautner S, Flexas J, Fromm J. Environmental stimuli and physiological responses: the current view on electrical signaling. Environ Exp Bot. 2015;114:15–21. doi:10.1016/j.envexpbot.2014.06.013.
  • Jenks A, Hasegawa PM. Plant abiotic stress, 2nd ed. Willey Blackwell, Iowa, USA; 2014. p. 347.
  • Simmi ZS, Dallagnol LJ, Almeida RO, Dorneles KR, Souza GM. Barley systemic bioelectrical changes detect pathogenic infection days before the first disease symptoms. Comput Electron Agric. 2023;209:107832. doi:10.1016/j.compag.2023.107832.
  • Parise AG, Reissig GN, Basso LF, Senko LGS, Oliveira TFC, de Toledo GRA, Ferreira AS, Souza GM. Detection of different hosts from a distance alters the behaviour and bioelectrical activity of cuscuta racemosa. Front Plant Sci. 2021;12:594195. doi:10.3389/fpls.2021.594195.
  • Baluska F, Mancuso S. Root apex transition zone as an oscillatory zone. Front Plant Sci. 2013b;4(354):1–15. doi:10.3389/fpls.2013.00354.
  • Costa JM, Grant OM, Chaves MM. Thermography to explore plant- environment interactions. J Exp Bot. 2013;64(13):3937–3949. doi:10.1093/jxb/ert029.
  • Pimentel C. A relação da planta com a água. Seropédica, RJ: Edur; 2004.
  • McClendon JH. The osmotic pressure of concentrated solutions of polyethylene glycol 6000, and its variation with temperature. J Exp Bot. 1981;32(4):861–866. doi:10.1093/jxb/32.4.861.
  • Gisiger T. Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev Camb Philos Soc. 2001;76(2):161–209. doi:10.1017/s1464793101005607.
  • Hesse J, Gross T. Self-organized criticality as a fundamental property of neural systems. Front Syst Neurosci. 2014;23(8):166. doi:10.3389/fnsys.2014.00166.
  • Morettin PA, Toloi CMC. Análise de séries temporais. 2nd ed. São Paulo, Brasil: Editora Blucher; 2006.
  • Pinheiro JID, Cunha SB, Carvajal SR, Gomes GC. Estatística básica: a arte de trabalhar com dados. Rio de Janeiro: Elsevier; 2009.
  • Bak P. How nature works: the science of self-organized criticality. New York, NY: Springer-Verlag; 1996.
  • Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Phys Rev A. 1988;38(1):364–374. doi:10.1103/PhysRevA.38.364.
  • Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512. doi:10.1126/science.286.5439.509.
  • Gao J, Barzel B, Barabasi A-L. Universal resilience patterns in complex networks. Nature. 2016;530(7590):307–312. doi:10.1038/nature16948.
  • Wegner LH, Lüttge U. Emergence and modularity in life sciences. Switzerland: Springer Nature; 2019.
  • Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET. The rich club of the C.Elegans neuronal connectome. J Neurosci. 2013;33(15):6380–6387. doi:10.1523/JNEUROSCI.3784-12.2013.
  • Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB, Sporns O. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol. 2011;7(2):e1001066. doi:10.1371/journal.pcbi.1001066.
  • Bray D. Protein molecules as computational elements in living cells. Nature. 1995;376(6538):307–312. doi:10.1038/376307a0.
  • He BJ. Scale-free brain activity: past, present, and future. Trends Cogn Sci. 2014;18(9):480–487. doi:10.1016/j.tics.2014.04.003.
  • He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66(3):353–369. doi:10.1016/j.neuron.2010.04.020.
  • Al Khazaaly S, Walker NA, Beilby J, Shepherd V. Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur Biophys J. 2009;39(1):167–174. doi:10.1007/s00249-009-0485-2.
  • Baluška F, Mancuso S, Volkmann D, Barlow P. Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia, Bratislava. 2004;13:7–19.
  • Bialasek M, Gorecka M, Mittler R, Karpinski S. Evidence for the involvement of electrical, calcium and ROS signaling in the systemic regulation of non-photochemical quenching and photosynthesis. Plant Cell Physiol. 2017;58(2):207–215. doi:10.1093/pcp/pcw232.
  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluska F, Arecchi FT, Mancuso S. Spatio-temporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci USA. 2009;106(10):4048–4053. doi:10.1073/pnas.0804640106.
  • Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(2 Pt 1):021906. doi:10.1103/PhysRevE.71.021906.
  • Grassberger P. Randomness, information and complexity. 2012. [Physics.data-an]. doi:10.48550/arXiv.1208.3459.
  • Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297–2301. doi:10.1073/pnas.88.6.2297.
  • Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J Physiol. 1994;266(4):H1643–H1656. doi:10.1152/ajpheart.1994.266.4.H1643.
  • Zhang Y-C. Complexity and 1/f noise. A phase space approach. J de Phys I, EDP Sci. 1991;1(7):971–977. doi:10.1051/jp1:1991180.
  • Chatterjee SK, Das S, Maharatna K, Masi E, Santopolo L, Mancuso S, Vitaletti A. Exploring strategies for classification of external stimuli using statistical features of the plant electrical response. J R Soc Interface. 2015;12(104):20141225–20141225. doi:10.1098/rsif.2014.1225.
  • Chatterjee SK, Ghosh S, Das S, Manzella V, Vitaletti A, Masi E, Santopolo L, Mancuso S, Maharatna K. Forward and inverse modelling approaches for prediction of light stimulus from electrophysiological response in plants. Measurement. 2014;53:101–116. doi:10.1016/j.measurement.2014.03.040.
  • Chen Y, Zhao D-J, Wang Z-Y, Wang Z-Y, Tang G, Huang L. Plant electrical signal classification based on waveform similarity. Algorithms. 2016;9(4):70. doi:10.3390/a9040070.
  • Tran D, Dutoit F, Najdenovska E, Wallbridge N, Plummer C, Mazza M, Raileanu LE, Camps C. Electrophysiological assessment of plant status outside a faraday cage using supervised machine learning. Sci Rep. 2019;9(1):17073. doi:10.1038/s41598-019-53675-4.
  • Comparini D, Masi E, Pandolfi C, Sabbatini L, Dolfi M, Morosi S, Mancuso S. Stem electrical properties associated with water stress conditions in olive tree. Agric Water Manage. 2020;234:106109. doi:10.1016/j.agwat.2020.106109.
  • Dolfi M, Dini C, Morosi S, Comparini D, Masi E, Pandolfi C, Mancuso S. Electrical signaling related to water stress acclimation. Sens Bio-Sens Res. 2021;32:100420. doi:10.1016/j.sbsr.2021.100420.
  • Reissig GN, Oliveira TFC, Oliveira RP, Posso DA, Parise AG, Nava DE, Souza GM. Fruit herbivory alters plant electrome: evidence for fruit-shoot long-distance electrical signaling in tomato plants. Front Sustain Food Syst. 2021;5:657401. doi:10.3389/fsufs.2021.657401.