739
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Stimulatory effects of smoke solution and biogas digestate slurry application on photosynthesis, growth, and methylation profiling of solanum tuberosum

, , , , , , , , , & show all
Article: 2336724 | Received 15 Feb 2024, Accepted 25 Mar 2024, Published online: 10 Apr 2024

References

  • Rouphael Y, Colla G. Biostimulants in agriculture. Front Plant Sci. 2020;11:40. Frontiers Media SA. doi:10.3389/fpls.2020.00040.
  • Zerssa GW, Hailemariam M, Tadele KT. Improving the sustainability of agriculture: challenges and opportunities. In: Lousada S, editor. Land-Use Management-Recent Advances, New Perspectives, and Applications. Intech Open; 2023. doi:10.5772/intechopen.112857.
  • Devi PI, Manjula M, Bhavani RV. Agrochemicals, environment, and human health. Annu Rev Environ Resour. 2022;47(1):399–13. doi:10.1146/annurev-environ-120920-111015.
  • Kurniawati A, Toth G, Ylivainio K, Toth Z. Opportunities and challenges of bio-based fertilizers utilization for improving soil health. Org Agric. 2023;13(3):335–350. doi:10.1007/s13165-023-00432-7.
  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: a global perspective. Front Plant Sci. 2017;7:2049. doi:10.3389/fpls.2016.02049.
  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric. 2017;4(1):1–12. doi:10.1186/s40538-017-0089-5.
  • Xu L, Geelen D. Developing biostimulants from agro-food and industrial by-products. Front Plant Sci. 2018;9:1567. doi:10.3389/fpls.2018.01567.
  • Drobek M, Frąc M, Cybulska J. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy. 2019;9(6):335. doi:10.3390/agronomy9060335.
  • Behera B, Supraja KV, Paramasivan B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. Bioresour Technol. 2021;339:125588. doi:10.1016/j.biortech.2021.125588.
  • Puglia D, Pezzolla D, Gigliotti G, Torre L, Bartucca ML, Del Buono D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability. 2021;13(5):2710. doi:10.3390/su13052710.
  • Funes-Pinter I, Pisi G, Aroca M, Uliarte EM. Compost tea and bioslurry as plant biostimulants. Part 2: biofertilizer test in ornamental flowers. J Plant Nutr. 2023;46(13):3041–3052. doi:10.1080/01904167.2023.2171883.
  • Yadav R, Sudhishri S, Khanna M, Lal K, Dass A, Kushwaha HL, Bandyopadhyay K, Dey A, Kushwah A, Nag RH. et al. Temporal characterization of biogas slurry: a pre-requisite to sustainable nutrigation in crop production. Front Sustain Food Syst. 2023;7:1234472. doi:10.3389/fsufs.2023.1234472.
  • You L, Yu S, Liu H, Wang C, Zhou Z, Zhang L, Hu D. Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of camellia oleifera Abel. PloS One. 2019;14(5):e0208289. doi:10.1371/journal.pone.0208289.
  • Zhang X, Wu D, Zakharchenko E, Qn L, A G, F L, Y W, M F. Review on effects of biogas slurry application on crop growth. Explore (New York, NY). 2022;19(4):571–577. doi:10.1016/j.explore.2022.11.001.
  • Khatoon A, Rehman SU, Aslam MM, Jamil M, Komatsu S. Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int J Mol Sci. 2020;21(20):7760. doi:10.3390/ijms21207760.
  • Kulkarni MG, Rengasamy KRR, Pendota SC, Gruz J, Plačková L, Novák O, Doležal K, Van Staden J. Bioactive molecules derived from smoke and seaweed ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. N Biotechnol. 2019;48:83–89. doi:10.1016/j.nbt.2018.08.004.
  • Jamil M, Kanwal, M, Aslam, MM Khan, SU, Malook, I,Tu, J, ur Rehman, S. Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Aust J Crop Sci. 2014;8(2):159–170.
  • Singh S, Uddin M, Khan MMA, Chishti AS, Singh S, Bhat UH. The role of plant-derived smoke and karrikinolide in abiotic stress mitigation: an omic approach. Plant Stress. 2023;7:100147. doi:10.1016/j.stress.2023.100147.
  • Shah G, Tu J, Fayyaz M, Masood S, Ullah H, Jamil M. Moringa oleifera smoke induced positive changes in biochemical, metabolic, and antioxidant profile of rice seedling under cadmium stress. Int J Phytorem. 2023;25(10):1337–1347. doi:10.1080/15226514.2022.2157793.
  • Pinit S, Ariyakulkiat L, Chaiwanon J. Rice straw-derived smoke water promotes rice root growth under phosphorus deficiency by modulating oxidative stress and photosynthetic gene expression. Sci Rep. 2023;13(1):14802. doi:10.1038/s41598-023-41987-5.
  • Hayat N, Afroz N, Rehman S, Bukhari SH, Iqbal K, Khatoon A, Taimur N, Sakhi S, Ahmad N, Ullah R. et al. Plant-derived smoke ameliorates salt stress in wheat by enhancing expressions of stress-responsive genes and antioxidant enzymatic activity. Agronomy. 2021;12(1):28. doi:10.3390/agronomy12010028.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
  • Kamran M, Imran Q, Khatoon A, Lee I, Rehman S. Effect of plant extracted smoke and reversion of abscisic acid stress on lettuce. Pak J Bot. 2013;45:1541–1549.
  • Association APH. Standard methods for the examination of water and wastewater. Washington DC, USA: American Public Health Association; 1926.
  • Odnell A, Recktenwald M, Stensén K, Jonsson B-H, Karlsson M. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion. Water Res. 2016;103:462–471. doi:10.1016/j.watres.2016.07.064.
  • Yun S, Xing T, Han F, Shi J, Wang Z, Fan Q, Xu H. Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion. Bioresour Technol. 2021;320:124294. doi:10.1016/j.biortech.2020.124294.
  • Zeb I, Yousaf S, Ali M, Yasmeen A, Khan AZ, Tariq JA, Zhao Q, Abbasi AM, Ahmad R, Khalil TM. et al. In-situ microaeration of anaerobic digester treating buffalo manure for enhanced biogas yield. Renewable Energy. 2022;181:843–850. doi:10.1016/j.renene.2021.09.089.
  • Afsar S, Bibi G, Ahmad R, Bilal M, Naqvi TA, Baig A, Shah MM, Huang B, Hussain J. Evaluation of salt tolerance in eruca sativa accessions based on morpho-physiological traits. PeerJ. 2020;8:e9749. doi:10.7717/peerj.9749.
  • Abbasi AZ, Bilal M, Khurshid G, Yiotis C, Zeb I, Hussain J, Baig A, Shah MM, Chaudhary SU, Osborne B. et al. Expression of cyanobacterial genes enhanced CO2 assimilation and biomass production in transgenic Arabidopsis thaliana. PeerJ. 2021;9:e11860. doi:10.7717/peerj.11860.
  • Barickman TC, Kopsell DA, Sams CE. Abscisic acid impacts tomato carotenoids, soluble sugars, and organic acids. HortScience. 2016;51(4):370–376. doi:10.21273/HORTSCI.51.4.370.
  • Chow PS, Landhäusser SM. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 2004;24(10):1129–1136. doi:10.1093/treephys/24.10.1129.
  • Saad M, Mary H, Amjid U, Shabir G, Aslam K, Shah SM, Khan AR. Photoperiodic stress induces genotype-specific shift in DNA methylation in tartary buckwheat. Biol Futur. 2019;70(4):278–285. doi:10.1556/019.70.2019.31.
  • Ahmad RC, Bilal M, Jeon J-H, Kim HS, Park Y-I, Shah MM, Kwon S-Y. Improvement of biomass accumulation of potato plants by transformation of cyanobacterial photorespiratory glycolate catabolism pathway genes. Plant Biotechnol Rep. 2016;10(5):269–276. doi:10.1007/s11816-016-0403-x.
  • Pierce SM, Esler K, Cowling RM. Smoke-induced germination of succulents (mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia. 1995;102(4):520–522. doi:10.1007/BF00341366.
  • Akeel A, Khan MMA, Jaleel H, Uddin M. Smoke-saturated water and karrikinolide modulate germination, growth, photosynthesis and nutritional values of carrot (Daucus carota L.). J Plant Growth Regul. 2019;38(4):1387–1401. doi:10.1007/s00344-019-09941-w.
  • Iqbal M, Asif S, Ilyas N, Raja NI, Hussain M, Shabir S, Ashraf Faz MN, Rauf A. Effect of plant derived smoke on germination and post germination expression of wheat (triticum aestivum L.). AJPS. 2016;7(6):806–813. doi:10.4236/ajps.2016.76075.
  • Kulkarni MG, Ascough GD, Van Staden J. Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of okra and tomato. HortScience. 2007;42(1):179–182. doi:10.21273/HORTSCI.42.1.179.
  • Keeley JE. Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. South African J Bot. 1993;59(6):638. doi:10.1016/S0254-6299(16)30681-0.
  • Kulkarni MG, Ascough GD, Van Staden J. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. Horttechnology. 2008;18(3):449–454. doi:10.21273/HORTTECH.18.3.449.
  • Zhou J, Fang L, Wang X, Guo L, Huang L. Effects of smoke-water on photosynthetic characteristics of isatis indigotica seedlings. Sustain Agric Res. 2013;2(2):24. doi:10.5539/sar.v2n2p24.
  • Aremu AO, Kulkarni MG, Bairu MW, Finnie JF, Van Staden J. Growth stimulation effects of smoke-water and vermicompost leachate on greenhouse grown-tissue-cultured ‘Williams’ bananas. Plant Growth Regul. 2012;66(2):111–118. doi:10.1007/s10725-011-9634-6.
  • Singh M, Uddin M, Chishti AS, Bhat UH, Khan S, Khan MMA. Plant-derived smoke water and karrikinolide (KAR1) enhance physiological activities, essential oil yield and bioactive constituents of mentha arvensis L. Front Plant Sci. 2023;14:1129130. doi:10.3389/fpls.2023.1129130.
  • Shabir S, Ilyas N, Asif S, Iqbal M, Kanwal S, Ali Z. Deciphering the role of plant-derived smoke solution in ameliorating saline stress and improving physiological, biochemical, and growth responses of wheat. J Plant Growth Regul. 2022;41(7):2769–2786. doi:10.1007/s00344-021-10473-5.
  • Iqbal M, Asif S, Ilyas N, Raja NI, Hussain M, Ejaz M, Saira H. Smoke produced from plants waste material elicits growth of wheat (triticum aestivum L.) by improving morphological, physiological and biochemical activity. Biotechnol Rep. 2018;17:35–44. doi:10.1016/j.btre.2017.12.001.
  • Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Marwal A, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr Plant Biol. 2021;26:100203. doi:10.1016/j.cpb.2021.100203.
  • Waheed MA, Jamil M, Khan MD, Shakir SK, Rehman SU. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (zea mays L.) under salt stress. Pak J Bot. 2016;48:1763–1774.
  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001;13(2):385–398. doi:10.1105/tpc.13.2.385.
  • Gong H-L, Dusengemungu L, Igiraneza C, Rukundo P. Molecular regulation of potato tuber dormancy and sprouting: a mini-review. Plant Biotechnol Rep. 2021;15(4):417–434. doi:10.1007/s11816-021-00689-y.
  • Xu W, Zhu Y, Wang X, Ji L, Wang H, Yao L, Lin C. The effect of biogas slurry application on biomass production and forage quality of lolium multiflorum. Sustainability. 2021;13(7):3605. doi:10.3390/su13073605.
  • Niu J, Liu C, Huang M, Liu K, Yan D. Effects of foliar fertilization: a review of current status and future perspectives. J Soil Sci Plant Nutr. 2021;21(1):104–118. doi:10.1007/s42729-020-00346-3.
  • Otálora G, Piñero MC, López-Marín J, Varó P, Del Amor FM. Effects of foliar nitrogen fertilization on the phenolic, mineral, and amino acid composition of escarole (cichorium endivia L. var. latifolium). Sci Hortic. 2018;239:87–92. doi:10.1016/j.scienta.2018.05.031.
  • Hou H, Zhou S, Hosomi M, Toyota K, Yosimura K, Mutou Y, Nisimura T, Takayanagi M, Motobayashi T. Ammonia emissions from anaerobically-digested slurry and chemical fertilizer applied to flooded forage rice. Water Air Soil Pollut. 2007;183(1–4):37–48. doi:10.1007/s11270-007-9353-9.
  • Garg RN, Pathak H, Das DK, Tomar RK. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environ Monit Assess. 2005;107(1–3):1–9. doi:10.1007/s10661-005-2021-x.
  • Terhoeven-Urselmans T, Scheller E, Raubuch M, Ludwig B, Joergensen RG. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Appl Soil Ecol. 2009;42(3):297–302. doi:10.1016/j.apsoil.2009.05.012.
  • Svoboda N, Taube F, Wienforth B, Kluß C, Kage H, Herrmann A. Nitrogen leaching losses after biogas residue application to maize. Soil Tillage Res. 2013;130:69–80. doi:10.1016/j.still.2013.02.006.
  • Zheng X, Fan J, Cui J, Wang Y, Zhou J, Ye M, Sun M. Effects of biogas slurry application on peanut yield, soil nutrients, carbon storage, and microbial activity in an ultisol soil in southern China. J Soils Sediments. 2016;16(2):449–460. doi:10.1007/s11368-015-1254-8.
  • Zhu K, Choi HL, Yao HQ, Suresh A, Oh DI. Effects of anaerobically digested pig slurry application on runoff and leachate. Chem Ecol. 2009;25(5):359–369. doi:10.1080/02757540903193114.
  • Islam MR, Rahman SME, Rahman MM, Oh DH, Ra CS. The effects of biogas slurry on the production and quality of maize fodder. Turkish J Agric For. 2010;34(1):91–99. doi:10.3906/tar-0902-44.
  • Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, Liang X, Xu K, Sepulveda C, Mostofa MG, Van Ha C. et al. KARRIKIN UPREGULATED F-BOX 1 negatively regulates drought tolerance in arabidopsis. Plant Physiol. 2022;190(4):2671–2687. doi:10.1093/plphys/kiac336.
  • Aslam MM, Khatoon A, Jamil M, Ur Rehman S, Komatsu S. Plant-derived smoke solution: a stress alleviator in crop. J Plant Growth Regul. 2024;1–18. doi:10.1007/s00344-023-11221-7.
  • Zhou W, Liang G, Molloy PL, Jones PA. DNA methylation enables transposable element-driven genome expansion. Proc Natl Acad Sci. 2020;117(32):19359–19366. doi:10.1073/pnas.1921719117.
  • Mager S, Ludewig U. Massive loss of DNA methylation in nitrogen-, but not in phosphorus-deficient zea mays roots is poorly correlated with gene expression differences. Front Plant Sci. 2018;9:497. doi:10.3389/fpls.2018.00497.
  • Zhang H, Zhang X, Xiao J. Epigenetic regulation of nitrogen signaling and adaptation in plants. Plants. 2023;12(14):2725. doi:10.3390/plants12142725.
  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci. 2008;105(2):803–808. doi:10.1073/pnas.0709559105.
  • Li Y, Brooks M, Yeoh-Wang J, McCoy RM, Rock TM, Pasquino A, Moon CI, Patrick RM, Tanurdzic M, Ruffel S. et al. SDG8-mediated histone methylation and RNA processing function in the response to nitrate signaling. Plant Physiol. 2020;182(1):215–227. doi:10.1104/pp.19.00682.
  • Tian P, Lin Z, Lin D, Dong S, Huang J, Huang T. The pattern of DNA methylation alteration, and its association with the changes of gene expression and alternative splicing during phosphate starvation in tomato. Plant Journal. 2021;108(3):841–858. doi:10.1111/tpj.15486.
  • Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere. 2004;54(8):1049–1058. doi:10.1016/j.chemosphere.2003.10.024.