613
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Unveiling kiwifruit TCP genes: evolution, functions, and expression insights

ORCID Icon, , , & ORCID Icon
Article: 2338985 | Received 21 Feb 2024, Accepted 26 Mar 2024, Published online: 10 Apr 2024

References

  • Lopez JA, Sun Y, Blair PB, Mukhtar MS. TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci. 2015;20(4):238–17. doi:10.1016/j.tplants.2015.01.005.
  • Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010;15(1):31–39. doi:10.1016/j.tplants.2009.11.003.
  • Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 1999;18(2):215–222. doi:10.1046/j.1365-313X.1999.00444.x.
  • Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RGH. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot. 2013;64(18):5673–5685. doi:10.1093/jxb/ert337.
  • Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Sinivasan N, Nath U. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. The Plant Cell. 2010;22(4):1174–1189. doi:10.1105/tpc.109.066647.
  • Ding S, Cai Z, Du H, Wang H. Genome-wide analysis of TCP family genes in Zea mays L. Identified a role for ZmTCP42 in drought tolerance. Int J Mol Sci. 2019;20:2762. doi:10.3390/ijms20112762.
  • Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N. et al. Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.). Front Plant Sci. 2018;9:1282. doi:10.3389/fpls.2018.01282.
  • Wen H, Chen Y, Du H, Zhang L, Zhang K, He H, Pan J, Cai R, Wang G. Genome-wide identification and characterization of the TCP gene family in cucumber (Cucumis sativus L.) and their transcriptional responses to different treatments. Genes. 2020;11(11):1379. doi:10.3390/genes11111379.
  • Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A. 2009;106(52):22534–22539. doi:10.1073/pnas.0908718106.
  • Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA. 2008;105:9117–9122. doi:10.1073/pnas.0801359105.
  • Resentini F, Felipo-Benavent A, Colombo L, Blázquez MA, Alabadí D, Masiero S. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol Plant. 2015;8(3):482–485. doi:10.1016/j.molp.2014.11.018.
  • Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J. 2008;53:42–52. doi:10.1111/j.1365-313X.2007.03308.x.
  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161(3):1375–1391. doi:10.1104/pp.112.208702.
  • Ling L, Zhang W, An Y, Du B, Wang D, Guo C. Genome-wide analysis of the TCP transcription factor genes in five legume genomes and their response to salt and drought stresses. Funct Integr Genomics. 2020;20(4):537–550. doi:10.1007/s10142-020-00733-0.
  • Lucero LE, Manavella PA, Gras DE, Ariel FD, Gonzalez DH. Class I and class II TCP transcription factors modulate SOC1-dependent flowering at multiple levels. Mol Plant. 2017;10(12):1571–1574. doi:10.1016/j.molp.2017.09.001.
  • Takeda T, Amano K, Ohto M, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol. 2006;61(1–2):165–177. doi:10.1007/s11103-006-6265-9.
  • Uberti-Manassero NG, Coscueta ER, Gonzalez DH. Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems. Plant Physiol Biochem. 2016;108:57–62. doi:10.1016/j.plaphy.2016.06.031.
  • Pillet J, Yu HW, Chambers AH, Whitaker VM, Folta KM. Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria × ananassa) fruits. J Exp Bot. 2015;66:4455–4467. doi:10.1093/jxb/erv205.
  • Guo ZH, Shu WS, Cheng HY, Wang GM, Qi KJ, Zhang SL, Gu C. Expression analysis of TCP genes in peach reveals an involvement of PpTCP.A2 in ethylene biosynthesis during fruit ripening. Plant Mol Biol Report. 2018;36:588–595. doi:10.1007/s11105-018-1105-z.
  • Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, De Maagd RA. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 2014;14(1):157. doi:10.1186/1471-2229-14-157.
  • Uberti Manassero NG, Viola IL, Welchen E, Gonzalez DH. TCP transcription factors: architectures of plant form. Biomol Concepts. 2013;4(2):111–127. doi:10.1515/bmc-2012-0051.
  • Huang T, Irish VF. Temporal control of plant organ growth by TCP transcription factors. Curr Biol. 2015;25(13):1765–1770. doi:10.1016/j.cub.2015.05.024.
  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell. 2007;19(2):473–484. doi:10.1105/tpc.106.044792.
  • Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J. 2013;76(6):901–913. doi:10.1111/tpj.12348.
  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell. 2007;19(2):458–472. doi:10.1105/tpc.106.048934.
  • Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell. 2010;22(4):1161–1173. doi:10.1105/tpc.109.069203.
  • Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J. 2011;67(4):701–714. doi:10.1111/j.1365-313X.2011.04629.x.
  • Wei W, Hu Y, Cui M-Y, Han Y-T, Gao K, Feng J-Y. Identification and transcript analysis of the TCP transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci. 2016, 07, 1937, doi:10.3389/fpls.2016.01937.
  • Stonehouse W, Gammon CS, Beck KL, Conlon CA, von Hurst PR, Kruger R. Kiwifruit: our daily prescription for health. Can J Physiol Pharmacol. 2013;91(6):442–447. doi:10.1139/cjpp-2012-0303.
  • Cheng CH, Seal AG, Boldingh HL, Marsh KB, MacRae EA, Murphy SJ, Ferguson AR. Inheritance of taste characters and fruit size and number in a diploid Actinidia chinensis (kiwifruit) population. Euphytica. 2004;138(2):185–195. doi:10.1023/B:EUPH.0000046802.28347.41.
  • Tang W, Sun X, Yue J, Tang X, Jiao C, Yang Y, Niu X, Miao M, Zhang D, Huang S. et al. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. Gigascience. 2019;8(4):1–10. doi:10.1093/gigascience/giz027.
  • Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles SC. et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics. 2018;19(1):1–19. doi:10.1186/s12864-018-4656-3.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server):W202–W208. doi:10.1093/nar/gkp335.
  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948. doi:10.1093/bioinformatics/btm404.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Battistuzzi FU. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology And Evolution. 2018;35(6):1547–1549. doi:10.1093/molbev/msy096.
  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49–e49. doi:10.1093/nar/gkr1293.
  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–327. doi:10.1093/nar/30.1.325.
  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–915. doi:10.1038/s41587-019-0201-4.
  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–295. doi:10.1038/nbt.3122.
  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–858. doi:10.1038/nprot.2015.053.
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(suppl):W29–W37. doi:10.1093/nar/gkr367.
  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi:10.1093/nar/gkaa913.
  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–D268. doi:10.1093/nar/gkz991.
  • Lin H, Niu L, McHale NA, Ohme-Takagi M, Mysore KS, Tadege M. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc Natl Acad Sci USA. 2013;110:366–371. doi:10.1073/pnas.1215376110.
  • Nardmann J, Werr W. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. Plant Mol Biol. 2012;78(1–2):123–134. doi:10.1007/s11103-011-9851-4.
  • Li ZQ, Ouyang Y, Pan XL, Zhang XH, Zhao L, Wang C, Xu R, Zhang HN, Wei YZ. TCP transcription factors in pineapple: genome-wide characterization and expression profile analysis during flower and fruit development. Horticulturae. 2023;9(7):799. doi:10.3390/horticulturae9070799.
  • Tang F, Chen N, Zhao M, Wang Y, He R, Peng X, Shen S. Identification and functional divergence analysis of WOX gene family in paper mulberry. Int J Mol Sci. 2017;18:1782. doi:10.3390/ijms18081782.
  • Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132(2):530–543. doi:10.1104/pp.103.021964.
  • Shang X, Cao Y, Ma L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int J Mol Sci. 2017;18:432. doi:10.3390/ijms18020432.
  • Laloum T, Martín G, Duque P. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 2018;23(2):140–150. doi:10.1016/j.tplants.2017.09.019.
  • Tang C, Zhu X, Qiao X, Gao H, Li Q, Wang P, Wu J, Zhang S. Characterization of the pectin methyl-esterase gene family and its function in controlling pollen tube growth in pear (Pyrus bretschneideri). Genomics. 2020;112(3):2467–2477. doi:10.1016/j.ygeno.2020.01.021.
  • Alvarez JM, Bueno N, CañCañAs RA, Avila C, Cánovas FM, Ordás RJ. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: new insights into the gene family evolution. Plant Physiol Biochem. 2018;123:304–318. doi:10.1016/j.plaphy.2017.12.031.
  • Danisman S, Van Der Wal F, Dhondt S, Waites R, De Folter S, Bimbo A, Dj Van Dijk A, Muino JM, Cutri L, Dornelas MC. et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically 1[C][W]. Plant Physiol. 2012;159(4):1511–1523. doi:10.1104/pp.112.200303.
  • Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP. et al. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun. 2016;7(1):1–10. doi:10.1038/ncomms13181.
  • Liu DK, Zhang CL, Zhao XW, Ke SJ, Li YY, Zhang DY, Zheng QY, Li MH, Lan SR, Liu ZJ. Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii. Front Plant Sci. 2022;13:1068969. doi:10.3389/fpls.2022.1068969.
  • Zhao Y, Su X, Wang X, Wang M, Chi X, Aamir Manzoor M, Li G, Cai Y. Comparative genomic analysis of TCP genes in six Rosaceae species and expression pattern analysis in Pyrus bretschneideri. Front Genet. 2021;12:752. doi:10.3389/fgene.2021.669959.
  • Wang J, Wang Z, Jia C, Miao H, Zhang J, Liu J, Xu B, Jin Z. Genome-wide identification and transcript analysis of TCP gene family in banana (Musa acuminata L.). Biochem Genet. 2022;2021(1):204–222. doi:10.1007/s10528-021-10100-8.
  • Sánchez Moreano JP, Xu X, Aucapiña Criollo CB, Chen X, Lin Y, Munir N, Lai Z. Genome-wide identification and comprehensive analyses of TCP gene family in banana (Musa L.). Trop Plant Biol. 2021;14(2):180–202. doi:10.1007/s12042-021-09281-8.
  • Zhao M, Peng X, Chen N, Shen S. Genome-wide identification of the TCP gene family in Broussonetia papyrifera and functional analysis of BpTCP8, 14 and 19 in shoot branching. Plants. 2020;9(10):1301. doi:10.3390/plants9101301.
  • Zhang S, Zhou Q, Chen F, Wu L, Liu B, Li F, Zhang J, Bao M, Liu G. Genome-wide identification, characterization and expression analysis of TCP transcription factors in petunia. Int J Mol Sci. 2020;21:6594. doi:10.3390/ijms21186594.
  • Vanneste JL. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu Rev Phytopathol. 2017;55(1):377–399. doi:10.1146/annurev-phyto-080516-035530.
  • Ding PT, Ding YL. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 2020;25(6):549–565. doi:10.1016/j.tplants.2020.01.004.
  • Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu FQ, Wang DW, Fu ZQ. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol Plant. 2018;11(12):1427–1439. doi:10.1016/j.molp.2018.10.002.