600
Views
0
CrossRef citations to date
0
Altmetric
Review

The “plant neurobiology” revolution

ORCID Icon
Article: 2345413 | Received 31 Jan 2024, Accepted 10 Apr 2024, Published online: 06 May 2024

References

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 2006;11(8):413–18. doi:10.1016/j.tplants.2006.06.009.
  • Bouteau F, Grésillon E, Chartier D, Arbelet-Bonnin D, Kawano T, Baluška F, Mancuso S, Calvo P, Laurenti P. Our sisters the plants? Notes from phylogenetics and botany on plant kinship blindness. Plant Signal Behav. 2021;16(12):2004769. doi:10.1080/15592324.2021.2004769.
  • Bullock TH. Goals of neuroethology. Bioscience. 1990;40(4):244–248. doi:10.2307/1311260.
  • Alpi A, Amrhein N, Bertl A, Blatt MR, Blumwald E, Cervone F, Dainty J, De Michelis IM, Epstein E, Galston AW. et al. Plant neurobiology: no brain, no gain? Trends Plant Sci. 2007;12(4):135–136. doi:10.1016/j.tplants.2007.03.002.
  • Taiz L, Alkon D, Draguhn A, Murphy A, Blatt M, Hawes C, Thiel G, Robinson DG. Plants neither possess nor require consciousness. Trends Plant Sci. 2019;24(8):677–687. doi:10.1016/j.tplants.2019.05.008.
  • Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. Protoplasma. 2021;258(3):459–476. doi:10.1007/s00709-020-01579-w.
  • Mallatt J, Robinson DG, Blatt MR, Draguhn A, Taiz L. Plant sentience: the burden of proof. Anim Sentience. 2023;8(33):15. doi:10.51291/2377-7478.1802.
  • Pollan M. The intelligent plant. New Yorker. 2013 December 23:92–105.
  • Foucault M. Madness and civilization: a history of insanity in the age of reason. New York: Routledge; 2006.
  • Hanson JB. On the 50th anniversary of our society. Plant Physiol. 1974;54(4):419. doi:10.1104/pp.54.4.419.
  • Boney AD. The ‘Tansley manifesto’ affair. New Phytol. 1991;118(1):3–21. doi:10.1111/j.1469-8137.1991.tb00561.x.
  • Kull K. An introduction to phytosemiotics: semiotic botany and vegetative sign systems. Sign Syst Stud. 2000;28:326–350. doi:10.12697/SSS.2000.28.18.
  • Witzany G. Plant communication from a biosemiotic perspective. Plant Signal Behav. 2006;1(4):169–178. doi:10.4161/psb.1.4.3163.
  • Carello C, Vaz D, Blau JJ, Petrusz S. Unnerving intelligence. Ecol Psych. 2012;24(3):241–264. doi:10.1080/10407413.2012.702628.
  • Frazier PA. On the possibility of plant consciousness: a view from ecointeractivism. Mind Matter. 2021;19:229–259.
  • Kelly CK. Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa. Ecology. 1990;71(5):916–1925. doi:10.2307/1937599.
  • Evans JP, Cain ML. A spatially explicit test of foraging behavior in a clonal plant. Ecology. 1995;76(4):1147–1155. doi:10.2307/1940922.
  • Willson MF, Burley N. Mate choice in plants. Princeton (NJ): Princeton University Press; 1983.
  • Salzman AG. Habitat selection in a clonal plant. Science. 1985;228(4699):603–604. doi:10.1126/science.3983647.
  • Kelly JK. Kin selection in the annual plant Impatiens capensis. Am Natur. 1996;147(6):899–918. doi:10.1086/285885.
  • Silvertown J, Gordon GM. A framework for plant behavior. Annu Rev Ecol Syst. 1989;20(1):349–366. doi:10.1146/annurev.es.20.110189.002025.
  • Ganeshaiah KN, Shaakar RU. Foraging decisions by plants – making a case for plant ethology. Curr Sci. 1993;65:371–373.
  • Levitis DA, Lidicker WZ Jr., Freund G. Behavioural biologists don’t agree on what constitutes behaviour. Anim Behav. 2009;78(1):103–110. doi:10.1016/j.anbehav.2009.03.018.
  • Calhoun AJ, El Hady A. Everyone knows what behavior is but they just don’t agree on it. Iscience. 2023;26(11):11. doi:10.1016/j.isci.2023.108210.
  • Tinbergen N. The study of instinct. Oxford (UK): Clarendon Press; 1955.
  • Aleklett K, Boddy L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol Evol. 2021;36(9):787–796. doi:10.1016/j.tree.2021.05.006.
  • Money NP. Hyphal and mycelial consciousness: the concept of the fungal mind. Fungal Biol. 2021;125(4):257–259. doi:10.1016/j.funbio.2021.02.001.
  • Rosalba B, Fabrizio E. The ethology of protozoa and the adaptive space hypothesis: a heuristic approach to the biology of these eukaryotic, unicellular organisms. Protistology. 2003;3:58–68.
  • Marshall WF. Cellular cognition: sequential logic in a giant protist. Curr Biol. 2019;29(24):R1303–R1305. doi:10.1016/j.cub.2019.10.034.
  • Lyon P. The cognitive cell: bacterial behavior reconsidered. Front Microbiol. 2015;6:264. doi:10.3389/fmicb.2015.00264.
  • Sprecher SG, Bernardo-Garcia FJ, van Giesen L, Hartenstein V, Reichert H, Neves R, Bailly X, Martinez P, Brauchle M. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biol Open. 2015;4(12):1688–1695. doi:10.1242/bio.014266.
  • Simon E, Satter RL, Galston AW. Circadian rhythmicity in excised Samanea pulvini. I. Sucrose-white light interactions. Plant Physiol. 1976;58(3):417–420. doi:10.1104/pp.58.3.417.
  • Piaget J. Behaviour and evolution. New York and London: Routledge; 1976.
  • Pereira L, Santo Domingo M, Ruggieri V, Argyris J, Phillips MA, Zhao G, Lian Q, He Y, Huang S, Pujol M. et al. Genetic dissection of climacteric fruit ripening in a melon population segregating for ripening behavior. Hortic Res. 2020;7(1):1–18. doi:10.1038/s41438-020-00411-z.
  • Bouzayen M, Latché A, Nath P, Pech JC. Mechanism of fruit ripening. In: Pua E, and Davey M. editors Plant Developmental Biology-Biotechnological Perspectives: Volume 1. New York and Heidelberg: Springer; 2009. pp. 319–339.
  • Stevens M. Color change, phenotypic plasticity, and camouflage. Front Ecol Evol. 2016;4:51. doi:10.3389/fevo.2016.00051.
  • Korzan WJ, Robison RR, Zhao S, Fernald RD. Color change as a potential behavioral strategy. Horm Behav. 2008;54(3):463–470. doi:10.1016/j.yhbeh.2008.05.006.
  • Nilsson Sköld H, Aspengren S, Wallin M. Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigm Cell Melanoma R. 2013;26(1):29–38. doi:10.1111/pcmr.12040.
  • Eacock A, Rowland HM, van’t Hof AE, Yung CJ, Edmonds N, Saccheri IJ. Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun Biol. 2019;2(1):286. doi:10.1038/s42003-019-0502-7.
  • Karban R. Plant sensing and communication. Chicago: University of Chicago Press; 2015.
  • Burdon-Sanderson JS. I. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula. P R Soc London. 1873; 21:495–496.
  • Gupta RK, Stitzer SN. Sir Jagadis Chunder Bose: his legacy and pioneering work [reverberations]. IEEE Microw Mag. 2009;10(2):113–115. doi:10.1109/MMM.2009.932237.
  • Dasgupta S. Jagadis Chandra Bose and the Indian response to Western science. Oxford (UK): Oxford University Press; 1999.
  • Minorsky PV. American racism and the lost legacy of Sir Jagadis Chandra Bose, the father of plant neurobiology. Plant Signal Behav. 2021;16(1):e1818030–2. doi:10.1080/15592324.2020.1818030.
  • Okamoto H. On the excitation phenomena in embryonic plants of Vigna sesquipedalis caused by electric stimuli, and presence of polarities concerning the excitability. Bot Mag. 1955;68(803):141–149. doi:10.15281/jplantres1887.68.141.
  • Scott BIH. Electricity in plants. Sci Am. 1963;207(4):107–118. doi:10.1038/scientificamerican1062-107.
  • Pallaghy CK. Electrophysiological studies in guard cells of tobacco. Planta. 1968;80(2):147–153. doi:10.1007/BF00385590.
  • Sinyukhin AM, Gorchakov VV. Action potentials of higher plants not possessing motor activity. Biophysics. 1966;11:966–975.
  • Lou CH, Shao LM, Chu TL. Electrochemical wave transmission in plants. J Peking Agric Univ. 1959;5:1–12.
  • Pickard BG. Action potentials in higher plants. Bot Rev. 1973;39(2):172–201. doi:10.1007/BF02859299.
  • Baluška F, Mancuso S, VanVolkenburgh E, Barbara G. Pickard – queen of plant electrophysiology. Plant Signal Behav. 2021;16(6):1911400. doi:10.1080/15592324.2021.1911400.
  • Bose JC. Comparative electro-physiology: a physico-physiological study. London (UK): Longmans Green; 1907.
  • Bose JC. Researches on irritability of plants. London (UK): Longmans Green; 1913.
  • Kôketsu R. Über die Wirkungen der Elektrischen Reizung an den Pflanzlichen Zellgebilden. J Dept Agr Kyushu Imp Univ. 1923;1(1):1–133. doi:10.5109/22324.
  • Asida Z. Thermal stimulation and thermal adaptation of Aldrovanda leaves, with a note on cold-rigor. Mem Coll Sci, Kyoto Imp Univ, Ser B. 1939;14:353–386.
  • Sibaoka T. Transmission of action potentials in Biophytum. Bot Mag Tokyo. 1973;86(2):51–61. doi:10.1007/BF02488515.
  • Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatio-temporal signaling, physiological and developmental regulation. Plant Physiol. 2021;185(4):1523–1541. doi:10.1093/plphys/kiab032.
  • Blatt MR. A charged existence: a century of transmembrane ion transport in plants. Plant Physiol. 2024. in press. doi:10.1093/plphys/kiad630.
  • Tompkins P, Bird C. The secret life of plants. New York: Harper and Row; 1973.
  • Enders TA, Strader LC. Auxin activity: past, present, and future. Am J Bot. 2015;102(2):180–196. doi:10.3732/ajb.1400285.
  • Miller EC. Forty years of plant physiology: some general impressions. Science. 1943;97(2519):315–319. doi:10.1126/science.97.2519.315.
  • Taiz L, Zeiger E. Plant physiology and development. 5th edn. Sunderland (MD): Sinauer; 2010.
  • Williams SE, Pickard BG. Receptor potentials and action potentials in Drosera tentacles. Planta. 1972;103(3):193–221. doi:10.1007/BF00386844.
  • Shepherd VA, Shimmen TA, Beilby MJ. Mechanosensory ion channels in Chara: the influence of cell turgor pressure on touch-activated receptor potentials and action potentials. Aust J Plant Physiol. 2001;28(7):551–566. doi:10.1071/PP01035.
  • Bose JC. The nervous mechanism of plants. London (UK): Longmans Green; 1926.
  • Molisch H. Nervous impulse in Mimosa pudica. Nature. 1929;123(3102):562–563. doi:10.1038/123562a0.
  • Vodoneev V, Akinchits E, Sukhov V. Variation potential in higher plants: mechanisms of generations. Plant Signal Behav. 2015;10(9):e1057365. doi:10.1080/15592324.2015.1057365.
  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH. System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol. 2009;149(3):1593–1600. doi:10.1104/pp.108.133884.
  • Jacobson SL. Receptor response in Venus’s fly-trap. J Gen Physiol. 1965;49(1):117–129. doi:10.1085/jgp.49.1.117.
  • de Bakker JM, Coronel R. Summation of activation at the branch-stem transition of Mimosa pudica; a comparison with summation in cardiac tissue. PLOS ONE. 2023;18(5):e0286103. doi:10.1371/journal.pone.0286103.
  • Pfeffer W. Physiologische Untersuchungen. Leipzig: W Engelmann; 1873.
  • Bose JC. Plant response as a means of physiological investigation. London (UK): Longmans Green; 1906.
  • Taiz L, Zeiger E, Møller IM, Murphy A. Plant physiology and development. 6th edn. Sunderland (MD): Sinauer; 2015.
  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant. 2000;23(2):267–278. doi:10.1046/j.1365-313x.2000.00786.x.
  • Lewis BD, Karlin-Neumann G, Davis RW, Spalding EP. Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol. 1997;114(4):1327–1334. doi:10.1104/pp.114.4.1327.
  • Nishizaki Y. Blue light pulse-induced transient changes of electrical potential and turgor pressure in the motor cells of Phaseolus vulgaris L. Plant Cell Physiol. 1988;29:1041–1046.
  • Warden CJ. Metaphyta. In Comparative psychology: a comprehensive treatise: Plants and invertebrates. Vol. II Warden CJ, Jenkins TN, Warner LH. New York: Ronald Press; 1940,180–286.
  • Crellin C. Whatever happened to plant psychology? Hist Philos Psychol Newsl. 1992;15:25–32.
  • Parker I. Psychology after deconstruction: erasure and social reconstruction. New York and London: Routledge; 2014.
  • Abrahamson CI, Chicas-Mosier AM. Learning in plants: lessons from Mimosa pudica. Front Psychol. 2016;7:417. doi:10.3389/fpsyg.2016.00417.
  • Castiello U. (Re)claiming plants in comparative psychology. J Comp Psychol. 2021;135(1):127–141. doi:10.1037/com0000239.
  • Yerkes RM. Psychology: a question of definitions. J Philos Psychol Sci Meth. 1913;10(21):580–582. doi:10.2307/2012437.
  • Beiser FC. Gustav Theodor Fechner. In: Zalta E, ed. The Stanford encyclopedia of philosophy. Redwood City (CA): Stanford University; 2020.
  • Fechner GT. Nanna oder über das Seelenleben der Pflanzen. Leipzig: Leopold Voß; 1848.
  • Gagliano M. Thus spoke the plant: a remarkable journey of groundbreaking scientific discoveries and personal encounters with plants. Berkeley (CA): North Atlantic Books; 2018.
  • Liester MB. Near-death experiences and ayahuasca-induced experiences: two unique pathways to a phenomenologically similar state of consciousness. J Transpersonal Psychol. 2013;45:24.
  • Gould SJ. Nonoverlapping magisteria. Nat Hist. 1997;106:16–22.
  • Boscowitz A. L’âme de la plante. Paris: P. Ducrocq; 1867.
  • Lindsay WL. Mind in plants. J Ment Sci. 1876;21(96):513–532. doi:10.1192/bjp.21.96.513.
  • Taylor JE. The sagacity & morality of plants. London: Chatto and Windus; 1884.
  • Gentry TG. Intelligence in plants and animals. New York: Doubleday Page; 1900.
  • Roth RR. Raoul H. Francé and the doctrine of life. Indianapolis (IN): 1st Books; 2000.
  • Francé RH. Pflanzenpsychologie als Arbeitshypothese der Pflanzenphysiologie. Stuttgart: Franck’sche Verlagshandlung; 1909.
  • Francé RH. Germs of minds in plants. Chicago: Charles H. Kerr; 1905.
  • Beardsell MF. Effects of routine handling on maize. Functional Plant Biol. 1977;4(6):857–861. doi:10.1071/PP9770857.
  • Roblin G. Mimosa pudica : a model for the study of the excitability in plants. Biol Rev. 1979;54(2):135–153. doi:10.1111/j.1469-185X.1979.tb00870.x.
  • Jones AM, Edgerton MD. The anatomy of phytochrome, a unique photoreceptor in plants. Semin Cell Biol. 1994;5(5):295–302. doi:10.1006/scel.1994.1036.
  • Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science. 2015;350(6257):203–207. doi:10.1126/science.aac9476.
  • Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front Plant Sci. 2014;5:446. doi:10.3389/fpls.2014.00446.
  • Moscatiello R, Mariani P, Sanders D, Maathuis FJ. Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J Exp Bot. 2016;57(11):2847–2865. doi:10.1093/jxb/erl043.
  • Jewell JB, Sowders JM, He R, Willis MA, Gang DR, Tanaka K. Extracellular ATP shapes a defense-related transcriptome both independently and along with other defense signaling pathways. Plant Physiol. 2019;179(3):1144–1158. doi:10.1104/pp.18.01301.
  • Rassizadeh L, Cervero R, Flors V, Gamir J. Extracellular DNA as an elicitor of broad-spectrum resistance in Arabidopsis thaliana. Plant Sci. 2021;312:111036. doi:10.1016/j.plantsci.2021.111036.
  • Myers RJ Jr., Fichman Y, Stacey G, Mittler R. Extracellular ATP plays an important role in systemic wound response activation. Plant Physiol. 2022;189(3):1314–1325. doi:10.1093/plphys/kiac148.
  • Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking bad news: dynamic molecular mechanisms of wound response in plants. Front Plant Sci. 2020;11:610445. doi:10.3389/fpls.2020.610445.
  • Lee K, Seo PJ. Wound-induced systemic responses and their coordination by electrical signals. Front Plant Sci. 2022;13:880680. doi:10.3389/fpls.2022.880680.
  • Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature. 2013;500(7463):422–426. doi:10.1038/nature12478.
  • Mancuso S. Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Funct Plant Biol. 1999;26(1):55–61. doi:10.1071/PP98098.
  • Stahlberg RC, Cosgrove DJ. The propagation of slow wave potentials in pea epicotyls. Plant Physiol. 1997;113(1):209–217. doi:10.1104/pp.113.1.209.
  • Evans MJ, Morris RJ. Chemical agents transported by xylem mass flow propagate variation potentials. Plant. 2017;91(6):1029–1037. doi:10.1111/tpj.13624.
  • Stanković B, Davies E. The wound response in tomato involves rapid growth and electrical responses, systemically up-regulated transcription of proteinase inhibitor and calmodulin and down-regulated translation. Plant Cell Physiol. 1998;39(3):268–274. doi:10.1093/oxfordjournals.pcp.a029367.
  • Koo AJK, Gao X, Daniel Jones A, Howe GA. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant. 2009;59(6):974–986. doi:10.1111/j.1365-313X.2009.03924.x.
  • Liu H, Timko MP. Jasmonic acid signaling and molecular crosstalk with other phytohormones. Int J Molec Sci. 2021;22(6):2914. doi:10.3390/ijms22062914.
  • Ovečka M, Sojka J, Tichá M, Komis G, Basheer J, Marchetti C, Šamajova O, Kuběnová L, Šamaj J. Imaging plant cells and organs with light-sheet and super-resolution microscopy. Plant Physiol. 2022;188(2):683–702. doi:10.1093/plphys/kiab349.
  • Zhou Y, Ding M, Gao S, Yu-Strzelczyk J, Krischke M, Duan X, Leide J, Reiderer M, Mueller MJ, Hedrich R. et al. Optogenetic control of plant growth by a microbial rhodopsin. Nat Plants. 2021;7(2):144–151. doi:10.1038/s41477-021-00853-w.
  • Coatsworth P, Gonzalez-Macia L, Collins ASP, Bozkurt T, Güder F. Continuous monitoring of chemical signals in plants under stress. Nat Rev Chem. 2023;7(1):7–25. doi:10.1038/s41570-022-00443-0.
  • Lew TTS, Koman VB, Silmore KS, Seo JS, Gordiichuk P, Kwak SY, Park M, Ang MC, Khong DT, Lee MA. et al. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat Plants. 2020;6(4):404–415. doi:10.1038/s41477-020-0632-4.
  • Fabricant A, Iwata GZ, Scherzer S, Bougas L, Rolfs K, Jodko-Władzińska A, Voight J, Hedrich R, Budker D. Action potentials induce biomagnetic fields in carnivorous Venus flytrap plants. Sci Rep. 2021;11(1):1438. doi:10.1038/s41598-021-81114-w.
  • Pascut FC, Couvreur V, Dietrich D, Leftley N, Reyt G, Boursiac Y, Calvo-Polanco M, Casimiro I, Maurel C, Salt DE. et al. Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nat Commun. 2021;12(1):4682. doi:10.1038/s41467-021-24913-z.
  • Payne WZ, Kurouski D. Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: a review. Plant Methods. 2021;17(1):1–20. doi:10.1186/s13007-021-00781-y.
  • Zahir SADM, Omar AF, Jamlos MF, Azmi MAM, Muncan J. A review of visible and near-infrared (vis-NIR) spectroscopy application in plant stress detection. Sensors Actuat A-Phys. 2022;338:113468. doi:10.1016/j.sna.2022.113468.
  • Gente R, Koch M. Monitoring leaf water content with THz and sub-THz waves. Plant Meth. 2015;11(1):1–9. doi:10.1186/s13007-015-0057-7.
  • Castro-Camus E, Palomar M, Covarrubias AA. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy. Sci Rep. 2013;3(1):2910. doi:10.1038/srep02910.
  • Herrero-Huerta M, Lindenbergh R, Gard W. Leaf movements of indoor plants monitored by terrestrial LiDAR. Front Plant Sci. 2018;9:189. doi:10.3389/fpls.2018.00189.
  • Dowling JJ. Observations of plant growth with the recording ultramicrometer. Nature. 1921;107(2695):523. doi:10.1038/107523a0.
  • Kristie DN, Jolliffe PA. High-resolution studies of growth oscillations during stem elongation. Can J Bot. 1985;64(11):2399–2405. doi:10.1139/b86-318.
  • Liptay A, Barron JL, Jewett T, van Wesenbeeck I. Oscillations in corn seedling growth as measured by optical flow. J Am Soc Hortic Sci. 1995;120(3):379–385. doi:10.21273/JASHS.120.3.379.
  • Iijima M, Matsushita N. A circadian and an ultradian rhythm are both evident in root growth of rice. J Plant Physiol. 2011;168(17):2072–2080. doi:10.1016/j.jplph.2011.06.005.
  • Scott BIH. Electric oscillations generated by plant roots and a possible feedback mechanism responsible for them. Aust J Bio Sci. 1957;10(2):164–179. doi:10.1071/BI9570164.
  • Toko K, Souda M, Matsuno T, Yamafuji K. Oscillations of electrical potential along a root of a higher plant. Biophys J. 1990;57(2):269–279. doi:10.1016/S0006-3495(90)82529-7.
  • McAinsh M, Webb AA, Taylor JE, Hetherington AM. Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell. 1995;7(8):1207–1219. doi:10.2307/3870096.
  • Shabala SN, Newman IA, Morris J. Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol. 1997;113(1):111–118. doi:10.1104/pp.113.1.111.
  • Shabala S, Knowles A. Rhythmic patterns of nutrient acquisition by wheat roots. Funct Plant Biol. 2002;29(5):595–605. doi:10.1071/PP01130.
  • Lazareva NP, Borisova TA, Zholkevich VN. Autooscillatory nature of pumping work of the root. Dokl Akad Nauk SSSR. 1986;289:761–764. in Russian.
  • Shirazi GA, Stone JF, Todd GW. Oscillatory transpiration in a cotton plant: I. Experimental characteristics. J Exp Bot. 1976;27(4):608–618. doi:10.1093/jxb/27.4.608.
  • McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM. Non‐invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant. 2010;63(6):1004–1016. doi:10.1111/j.1365-313X.2010.04300.x.
  • Chaudhary RM, Sinha SK. Ultradian rhythm in rate of respiration in Brassica juncea leaves. J Plant Physiol. 1995;146(4):450–452. doi:10.1016/S0176-1617(11)82007-9.
  • Ogawa T. Simple oscillations in photosynthesis of higher plants. BBA– Bioenergetics. 1982;681(1):103–109. doi:10.1016/0005-2728(82)90283-3.
  • Brilli F, Tsonev T, Mahmood T, Velikova V, Loreto F, Centritti M. Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance, and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings. J Exp Bot. 2013;64(2):519–528. doi:10.1093/jxb/ers353.
  • Rasulov B, Talts E, Niinemets Ü. Spectacular oscillations in plant isoprene emission under transient conditions explain the enigmatic CO2 response. Plant Physiol. 2016;172(4):2275–2285. doi:10.1104/pp.16.01002.
  • Glyan’ko AK, Ischenko AA. Rhythmical changes of a level nitric oxide (NO) in roots etiolated seedlings of pea (Pisum sativum L.) and influence of exogenous calcium. J Stress Physiol Biochem. 2014;10:56–66. in Russian.
  • Due G. Frequency as a property of physiological signals in plants. Plant Cell Env. 1989;12(2):145–149. doi:10.1111/j.1365-3040.1989.tb01926.x.
  • Li Y, Goldbeter A. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness. Biophys J. 1989;55(1):125–145. doi:10.1016/S0006-3495(89)82785-7.
  • Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban F, Seltzer Y, Ben-Dor U, Estlein P. et al. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecol Lett. 2019;22(9):1483–1492. doi:10.1111/ele.13331.
  • Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew VL, Blatt MR. An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol. 2016;170(1):33–42. doi:10.1104/pp.15.01607.
  • Iwano M, Ngo QA, Entani T, Shiba H, Nagai T, Miyawaki A, Isogai A, Grossniklaus U, Takayama S. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development. 2012;39(22):4202–4209. doi:10.1242/dev.081208.
  • Li Y, Lenaghan SC, Zhang M. Nonlinear dynamics of the movement of the Venus flytrap. Bull Math Biol. 2012;74(10):2446–2473. doi:10.1007/s11538-012-9760-y.
  • Chen JP, Engelmann W, Baier G. Nonlinear dynamics in the ultradian rhythm of Desmodium motorium. Zeitschrift für Naturforschung A. 1995;50(12):1113–1116. doi:10.1515/zna-1995-1208.
  • Ito T, Ito K. Nonlinear dynamics of homeothermic temperature control in skunk cabbage, Symplocarpus foetidus. Phys Rev E. 2005;72(5):051909. doi:10.1103/PhysRevE.72.051909.
  • Feng J, Zhang Q, Wang W, Hao S. Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant. Eur Phys J Plus. 2017;132(3):1–14. doi:10.1140/epjp/i2017-11352-9.
  • Prytz G, Futsaether CM, Johnsson A. Self‐sustained oscillations in plant water regulation: induction of bifurcations and anomalous rhythmicity. New Phytol. 2003;158(2):259–267. doi:10.1046/j.1469-8137.2003.00742.x.
  • Shabala S, Delbourgo R, Newman I. Observations of bifurcation and chaos in plant physiological responses to light. Funct Plant Biol. 1997;24(1):91–96. doi:10.1071/PP96075.
  • Rand RH, Upadhyaya SK, Cooke JR, Storti DW. Hopf bifurcation in a stomatal oscillator. J Math Biol. 1982;12(1):1–11. doi:10.1007/BF00275199.
  • Mazzocchi F. Complexity and the reductionism–holism debate in systems biology. Syst Biol Med. 2012;4(5):413–427. doi:10.1002/wsbm.1181.
  • Barlow PW, Mikulecký M, Střeštík J. Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity. Protoplasma. 2010;247(1–2):25–43. doi:10.1007/s00709-010-0136-6.
  • Minorsky PV. Do geomagnetic variations affect plant function? J Atmos Sol-Terr Phys. 2007;69(14):1770–1774. doi:10.1016/j.jastp.2006.12.004.
  • Esposito M. Romantic biology, 1890–1945. New York and London: Routledge; 2015.
  • Poggi S, Bossi M. eds. Romanticism in science: science in Europe, 1790-1840. Dordrecht: Kluwer Academic; 1994.
  • Cunningham A, Jardine N. eds. Romanticism and the sciences. Cambridge: Cambridge University Press; 1990.
  • Diderot D. Éléments de physiologie. [1778], critical edition. J Mayer, ed. Paris: Marcel Didier;1964.
  • Breidbach O. Goethe’s metamorphosenlehre. München: Wilhelm Fink Verlag; 2006.
  • Niklas KJ, Kutschera U. From Goethe’s plant archetype via Haeckel’s biogenetic law to plant evo-devo 2016. Theory Biosci. 2017;136(1–2):49–57. doi:10.1007/s12064-016-0237-7.
  • Dettelbach M. The face of nature: precise measurement, mapping, and sensibility in the work of Alexander von Humboldt. Stud Hist Philos Sci, Pt C. 1999;30(4):473–504. doi:10.1016/S1369-8486(99)00011-4.
  • Mohan AV, Tamma K. The lasting contribution of Alexander von Humboldt to our understanding of the natural world. Resonance. 2021;26(8):1041–1050. doi:10.1007/s12045-021-1207-z.
  • Richards RJ, Ruse M. Debating Darwin. Chicago: University of Chicago Press; 2016.
  • Beer G. Darwin and romanticism. The Wordsworth Circle. 2010;41(1):3–9. doi:10.1086/TWC24043679.
  • Liu X. Humboldt, Darwin, and romantic resonance in science. Stud Hist Philos Sci. 2022;92:196–208. doi:10.1016/j.shpsa.2022.01.020.
  • Lansley M. Charles Darwin’s debt to the Romantics [ dissertation]. Winchester (UK), University of Winchester; 2016.
  • Darwin C. The power of movement in plants. London: John Murray; 1880.
  • Baluška F, Mancuso S, Volkmann D, Barlow PW. Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia (Bratislava). 2004;59:1–13.
  • Barlow PW. Charles Darwin and the plant root apex. In: Baluška F, Mancuso S Volkmann D. editors Communication in plants: neuronal aspects of plant life. Berlin: Springer; 2016. pp. 37–51.
  • Arthur JC, MacDougal DT. Living plants and their properties: a collection of essays. New York: Baker and Taylor; 1898.
  • De Duve C, Beaufay H. A short history of tissue fractionation. J Cell Biol. 1981;91(3):293s–299s. doi:10.1083/jcb.91.3.293s.
  • Harrington A. Reenchanted science: holism in German culture from Wilhelm II to Hitler. Princeton (NJ): Princeton University Press; 1996.
  • Bose JC. The action of drugs on plants. Lancet. 1914;184(4758):1105–1110. doi:10.1016/S0140-6736(00)96503-6.
  • Fromm J, Spanswick R. Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot. 1993;44(7):1119–1125. doi:10.1093/jxb/44.7.1119.
  • Williamson RE, Ashley CC. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature. 1982;296(5858):647–651. doi:10.1038/296647a0.
  • Auger D, Fessard A. Sur une variation négative graduable et non propagée obtenue par stimulation sous- liminaire d’une cellule végétale. CR Soc Biol (Paris) 1935; 118:1059–1060.
  • Bose JC. On diurnal variation of moto-excitability in Mimosa. Ann Bot. 1913;27(4):759–779. doi:10.1093/oxfordjournals.aob.a089486.
  • Wallace RH. Studies on the sensitivity of Mimosa pudica III. The effect of temperature, humidity, and certain other factors upon seismonic sensitivity. Am J Bot. 1931;18(4):288–307. doi:10.1002/j.1537-2197.1931.tb09591.x.
  • Burge WE, Wickwire GC, Fuller HJ. Daily variation in the sensitivity of Mimosa with special reference to the action of light. Bot Gaz. 1936;97(3):672–677. doi:10.1086/334590.
  • Fuller HJ, Hanley JH. Fatigue, summation, and daily variation of irritability in sensitive stigmas. Bot Gaz. 1938;99(4):877–880. doi:10.1086/334755.
  • Anderson-Bernadas C, Cornelissen G, Turner CM, Koukkari WL. Rhythmic nature of thigmomorphogenesis and thermal stress of Phaseolus vulgaris L. shoots. J Plant Physiol. 1997;151(5):575–580. doi:10.1016/S0176-1617(97)80233-7.
  • Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AA. Time of day modulates low-temperature Ca2+ signals in Arabidopsis. Plant J. 2006;48(6):962–973. doi:10.1111/j.1365-313X.2006.02933.x.
  • Volkov AG, Wooten JD, Waite AJ, Brown CR, Markin VS. Circadian rhythms in electrical circuits of Clivia miniata. J Plant Physiol. 2011;168(15):1753–1760. doi:10.1016/j.jplph.2011.03.012.
  • Ndung’u RW, Kamweru PK, Kirwa AT. Action and variation potential electrical signals in higher plants. Afr J Biol Sci. 2021;3(1):1–18. doi:10.33472/AFJBS.3.1.2021.1-18.
  • Dziubińska H, Trȩbacz K, Zawadzki T. The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol Plant. 1989;75(3):417–423. doi:10.1111/j.1399-3054.1989.tb04648.x.
  • Fellner M, Ford ED, van Volkenburgh E. Development of erect leaves in a modern maize hybrid is associated with reduced responsiveness to auxin and light of young seedlings in vitro. Plant Signal Behav. 2006;1(4):201–211. doi:10.4161/psb.1.4.3106.
  • Kruska D. Mammalian domestication and its effect on brain structure and behavior. In: Intelligence and evolutionary biology, edited by Jerison H, Jerison, I. Berlin and Heidelberg: Springer; 1988. pp. 211–250.
  • Mancuso S. Federico Delpino and the foundation of plant biology. Plant Signal Behav. 2010;5(9):1067–1071. doi:10.4161/psb.5.9.12102.
  • Calvo Garzon F. The quest for cognition in plant neurobiology. Plant Signal Behav. 2007;2(4):208–211. doi:10.4161/psb.2.4.4470.
  • Wang Q, Guerra S, Ceccarini F, Bonato B, Castiello U. Sowing the seeds of intentionality: motor intentions in plants. Plant Signal Behav. 2021;16(11):1949818. doi:10.1080/15592324.2021.1949818.
  • Miguel-Tomé S, Llinàs RR. Broadening the definition of a nervous system to better understand the evolution of plants and animals. Plant Signal Behav. 2021;16(10):e1927562. doi:10.1080/15592324.2021.1927562.
  • Marder M. Plant intentionality and the phenomenological framework of plant intelligence. Plant Signal Behav. 2012;7(11):1365–1372. doi:10.4161/psb.21954.
  • Marder M. Plant intelligence and attention. Plant Signal Behav. 2013;8(5):e23902. doi:10.4161/psb.23902.
  • Koechlin F. The dignity of plants. Plant Signal Behav. 2009;4(1):78–79. doi:10.4161/psb.4.1.7315.
  • Zerubavel E. The rigid, the fuzzy, and the flexible: notes on the mental sculpting of academic identity. Soc Res. 1995;62:1093–1106.
  • Darwin C. The descent of man. London: John Murray; 1871.
  • Mallatt J, Robinson DG, Draguhn A, Blatt MR, Taiz L. Understanding plant behavior: a student perspective: response to Van Volkenburgh et al. Trends Plant Sci. 2021;26(11):1089–1090. doi:10.1016/j.tplants.2021.08.014.
  • Snelders HAM. Romanticism and Dutch scientists. In: Poggi S Bossi M. editors Romanticism in science: science in Europe 1790-1840. Dordrecht: Kluwer; 1994. pp. 175–188.
  • Taiz L, Taiz L. Flora unveiled: the discovery and denial of sex in plants. New York: Oxford University Press; 2017.
  • Holdrege C. Goethe and the evolution of science. Context. 2014;31:10–23.
  • Nicolson M. Alexander von Humboldt and the geography of vegetation. In: Cunningham A Jardine N. editors Romanticism and the sciences. Cambridge: Cambridge University Press; 1990. pp. 169–185.
  • Deutsch J. Darwin and barnacles. CR Biol. 2010;333(2):99–106. doi:10.1016/j.crvi.2009.11.009.
  • Richards RJ. Darwin’s metaphysics of mind. In: Hösle V Illies C. editors Darwin and philosophy. Notre Dame (IN): Notre Dame University Press; 2005. pp. 166–180.
  • Tandon PN. Jagdish Chandra Bose & plant neurobiology. Indian J Med Res. 2019;149(5):593. doi:10.4103/ijmr.IJMR_392_19.
  • Wheatley HB. The early history of the Royal Society. Hertford: Stephen Austin; 1905.
  • Paszewski A, Zawadzki T, Dziubinska H. Higher plant biopotentials and the integration of biological sciences. Folia Societ Scient Lublin. 1977;19:95–116.
  • Tully T, Bolwig G, Christensen J, Connolly J, DelVecchio M, DeZazzo J, Dubnau J, Jones C, Pinto S, Regulski M. et al. A return to genetic dissection of memory in Drosophila. Cold Spring Harbor Symp Quant Biol. 1996;61:207–218.
  • Timiriazeff CA. The movement of plants: a history of our time. Mod Rev (Calcutta). 1926 December:577–581.
  • Calvo Garzón P, Keijzer F. Plants: adaptive behavior, root-brains, and minimal cognition. Adapt Behav. 2011;19(3):155–171. doi:10.1177/1059712311409446.
  • Inagaki K. The effects of raising animals on children’s biological knowledge. Brit J Dev Psychol. 2000;8(2):119–129. doi:10.1111/j.2044-835X.1990.tb00827.x.
  • Coley JD. Where the wild things are: informal experience and ecological reasoning. Child Dev. 2012;83(3):992–1006. doi:10.1111/j.1467-8624.2012.01751.x.
  • Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol. 2017;77(5):522–547. doi:10.1002/dneu.22447.
  • Holdaway‐Clarke TL. Plasmodesmata. Oxford (UK): Blackwell Publishing. 2018 Regulation of plasmodesmatal conductance. 279–297.
  • Trębacz K, Dziubinska H, Krol E. Electrical signals in long-distance communication in plants. In: Baluška FF, Mancuso S Volkmann D. editors Communication in plants: neuronal aspects of plant life. Berlin: Springer; 2006. pp. 277–290.
  • Scherzer S, Böhm J, Huang S, Iosip AL, Kreuzer I, Becker D, Heckmann M, Al-Rasheid KAS, Dreyer I, Hedrich R. A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves. Current Biology. 2022;32(19):4255–4263. doi:10.1016/j.cub.2022.08.051.
  • Houwink AL. The conduction of excitation in Mimosa pudica. Recl Trav Bot Néerl. 1935;32:51–91.
  • Mancuso S, Viola A. Brilliant green: the surprising history and science of plant intelligence. Washington DC: Island Press; 2015.
  • Plieth C, Hansen UP, Knight H, Knight MR. Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J. 1999;18(5):491–497. doi:10.1046/j.1365-313X.1999.00471.x.
  • Minorsky PV. Temperature sensing by plants: a review and hypothesis. Plant Cell Env. 1989;12(2):119–135. doi:10.1111/j.1365-3040.1989.tb01924.x.
  • Dussotour A. Learning in single-celled organisms. Biochem Biophys Res Commun. 2021;564:92–102. doi:10.1016/j.bbrc.2021.02.018.
  • Boisseau RP, Vogel D, Dussutour A. Habituation in non-neural organisms: evidence from slime moulds. Proc R Soc B. 2016;283(1829):20160446. doi:10.1098/rspb.2016.0446.
  • Rajan D, Makushok T, Kalish A, Acuna L, Bonville A, Almanza KC, Garibay B, Tang E, Voss M, Lin A. et al. Single-cell analysis of habituation in Stentor coeruleus. Curr Biol. 2023;33(2):241–251. doi:10.1016/j.cub.2022.11.010.
  • Hoffer SM, Westerhoff HV, Hellingwerf KJ, Postma PW, Tommassen JAN. Autoamplification of a two-component regulatory system results in “learning” behavior. J Bacteriol. 2001;183(16):4914–4917. doi:10.1128/JB.183.16.4914-4917.2001.
  • Van Duijn M. Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning. Interface Focus. 2017;7(3):20160158. doi:10.1098/rsfs.2016.0158.
  • Meyerowitz EM. Plants compared to animals: the broadest comparative study of development. Science. 2002;295(5559):1482–1485. doi:10.1126/science.1066609.
  • Baluška F, Reber AS. Sentience and consciousness in single cells: how the first minds emerged in unicellular species. BioEssays. 2019;41(3):e1800229. doi:10.1002/bies.201800229.
  • McGregor S, Vasas V, Husbands P, Fernando C. Evolution of associative learning in chemical networks. PLOS Comput Biol. 2012;8(11):e1002739. doi:10.1371/journal.pcbi.1002739.
  • Pontes AC, Mobley RB, Ofria C, Adami C, Dyer FC. The evolutionary origin of associative learning. Am Nat. 2020;195(1):E1–E19. doi:10.1086/706252.
  • Armus HL, Montgomery AR, Jellison JL. Discrimination learning in paramecia (P. caudatum). Psychol Rec. 2006;56(4):489–498. doi:10.1007/BF03396029.
  • Fernando CT, Liekens AM, Bingle LE, Beck C, Lenser T, Stekel DJ, Rowe JE. Molecular circuits for associative learning in single-celled organisms. J R Soc Interface. 2009;6(34):463–469. doi:10.1098/rsif.2008.0344.
  • Gershman SJ, Balbi PE, Gallistel CR, Gunawardena J. Reconsidering the evidence for learning in single cells. Elife. 2021;10:e61907. doi:10.7554/eLife.61907.
  • Carrasco-Pujante J, Bringas C, Malaina I, Fedetz M, Martínez L, Pérez-Yarza G, Boyano MD, Berieva M, Goodkov A, López JI. et al. Associative conditioning is a robust systemic behavior in unicellular organisms: an interspecies comparison. Front Microbiol. 2021;12:707086. doi:10.3389/fmicb.2021.707086.
  • Kippenberger S, Pipa G, Steinhorst K, Zöller N, Kleemann J, Özistanbullu D, Scheller B. Learning in the single-cell organism Physarum polycephalum: effect of propofol. IJMS. 2023;24(7):6287. doi:10.3390/ijms24076287.
  • Nilsonne G, Appelgren A, Axelsson J, Fredrikson M, Lekander M. Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro. Behav Brain Funct. 2011;7(47):1–5. doi:10.1186/1744-9081-7-47.
  • Gagliano M, Vyazovskiy VV, Borbély AA, Grimonprez M, Depczynski M. Learning by association in plants. Sci Rep. 2016;6(1):38427. doi:10.1038/srep38427.
  • Markel K. Lack of evidence for associative learning in pea plants. eLife. 2020;9:e57614. doi:10.7554/eLife.57614.
  • Ponkshe A, Blancas Barroso J, Abramson CI, Calvo P. A case study of learning in plants: lessons learned from pea plants. Q J Exp Psychol. 2023;17470218231203078. doi:10.1177/17470218231203078.
  • Galviz YC, Ribeiro RV, Souza GM. Yes, plants do have memory. Theor Exp Plant Physiol. 2020;32(3):195–202. doi:10.1007/s40626-020-00181-y.
  • Szechyńska-Hebda M, Kruk J, Górecka M, Karpińska B, Karpiński S. Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell. 2010;22(7):2201–2218. doi:10.1105/tpc.109.069302.
  • White J, Yamashita F. Boquila trifoliolata mimics leaves of an artificial plastic host plant. Plant Signaling & Behavior. 2021;17(1):e1977530. doi:10.1080/15592324.2021.1977530.
  • Gianoli E, Carrasco-Urra F. Leaf mimicry in a climbing plant protects against herbivory. Current Biology. 2014;24(9):984–988. doi:10.1016/j.cub.2014.03.010.
  • Baluška F, Mancuso S. Vision in plants via plant-specific ocelli? Trends Plant Sci. 2016;21(9):727–730. doi:10.1016/j.tplants.2016.07.008.
  • Sumner-Rooney L, Ullrich-Lüter J. Extraocular vision in echinoderms. In: Buschbeck N Bok M. editors Distributed vision: from simple sensors to sophisticated combination eyes. Cham: Springer Nature; 2023. pp. 49–85.
  • Calvo P. What is it like to be a plant? J Conscious Stud. 2017;4:205–227.
  • Calvo P, Sahi V, Trewavas A. Are plants sentient? Plant Cell Env. 2017;40(11):2858–2869. doi:10.1111/pce.13065.
  • Aru J, Suzuki M, Rutiku R, Larkum ME, Bachmann T. Coupling the state and contents of consciousness. Front Syst Neurosci. 2019;13:43. doi:10.3389/fnsys.2019.00043.
  • Aru J, Suzuki M, Larkum ME. Cellular mechanisms of conscious processing. Trends Cognitive Sci. 2020;24(10):814–825. doi:10.1016/j.tics.2020.07.006.
  • Hertwig R. A manual of zoology. New York: Henry Holt; 1909.
  • Filhol H. Études sur les mammifères fossiles de Sansan. Bibliothèque de l´École des Hautes Études, section Sciences naturelles Paris. 1890;37:1–319.
  • Blatt M. Challenging research. Plant Physiol. 2021;186(2):802–803. doi:10.1093/plphys/kiab151.
  • Rehm H, Gradmann D. Intelligent plants or stupid studies. Lab Times. 2010;3:30–32.
  • Myers N. Conversations on plant sensing: notes from the field. NatureCulture. 2015;3:35–66.