448
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Investigating the mechanism of chloroplast singlet oxygen signaling in the Arabidopsis thaliana accelerated cell death 2 mutant

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2347783 | Received 29 Jan 2024, Accepted 19 Apr 2024, Published online: 03 May 2024

References

  • de Souza A, Wang JZ, Dehesh K. Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu Rev Plant Biol. 2017;68(1):85–9. doi:10.1146/annurev-arplant-042916-041007.
  • Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol. 2016;67(1):25–53. doi:10.1146/annurev-arplant-043015-111854.
  • Triantaphylides C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 2009;14(4):219–228. doi:10.1016/j.tplants.2009.01.008.
  • Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol. 2022;23(10):663–679. doi:10.1038/s41580-022-00499-2.
  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 2008;148(2):960–968. doi:10.1104/pp.108.125690.
  • Hideg E, Kálai T, Hideg K, Vass I. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry. 1998;37:11405–11411.
  • Telfer A, Oldham TC, Phillips D, Barber J. Singlet oxygen formation detected by near-infrared emission from isolated photosystem II reaction centres: direct correlation between P680 triplet decay and luminescence rise kinetics and its consequences for photoinhibition. J Photochem Photobiol B. 1999;48(2–3):89–96. doi:10.1016/S1011-1344(99)00028-7.
  • Page MT, AC M, Smith AG, Terry MJ. Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression. New Phytologist. 2017;213(3):1168–1180. doi:10.1111/nph.14223.
  • Op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I. et al. Rapid induction of distinct stress responses after the release of singlet oxygen in arabidopsis. Plant Cell. 2003;15(10):2320–2332. doi:10.1105/tpc.014662.
  • Woodson JD, Joens MS, Sinson AB, Gilkerson J, Salome PA, Weigel D, Fitzpatrick JA, Chory J. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science. 2015;350(6259):450–454. doi:10.1126/science.aac7444.
  • Fisher KE, Krishnamoorthy P, Joens MS, Chory J, Fitzpatrick JAJ, Woodson JD. Singlet oxygen leads to structural changes to chloroplasts during their degradation in the Arabidopsis thaliana plastid ferrochelatase two mutant. Mutant Plant Cell Physiol. 2022;63(2):248–264. doi:10.1093/pcp/pcab167.
  • Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A, Ravanat J-L, Mueller MJ, Bouvier F, Havaux M. et al. Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell. 2013;25(4):1445–1462. doi:10.1105/tpc.113.109827.
  • Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E. et al. The genetic basis of singlet Oxygen?Induced stress responses of arabidopsis thaliana. Science. 2004;306(5699):1183–1185. doi:10.1126/science.1103178.
  • Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev. 2010;39(8):3181–3209. doi:10.1039/b926014p.
  • Meskauskiene R, Nater M, Goslings D, Kessler F, Op den Camp R, Apel K. FLU: a negative regulator of chlorophyll biosynthesis in arabidopsis thaliana. Proc Natl Acad Sci USA. 2001;98(22):12826–12831. doi:10.1073/pnas.221252798.
  • Wang L, Kim C, Xu X, Piskurewicz U, Dogra V, Singh S, Mahler H, Apel K. Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci USA. 2016;113(26):E3792–800. doi:10.1073/pnas.1603562113.
  • Shumbe L, Chevalier A, Legeret B, Taconnat L, Monnet F, Havaux M. Singlet oxygen-induced cell death in Arabidopsis under high-light stress is controlled by OXI1 kinase. Plant Physiol. 2016;170(3):1757–1771. doi:10.1104/pp.15.01546.
  • Shumbe L, D’Alessandro S, Shao N, Chevalier A, Ksas B, Bock R, Havaux M. METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant, Cell Environ. 2017;40(2):216–226. doi:10.1111/pce.12856.
  • Shao N, Duan GY, Bock R. A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells. Plant Cell. 2013;25(10):4209–4226. doi:10.1105/tpc.113.117390.
  • Lee KP, Kim C, Landgraf F, Apel K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007;104(24):10270–10275. doi:10.1073/pnas.0702061104.
  • Danon A, Coll NS, Apel K. Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2006;103(45):17036–17041. doi:10.1073/pnas.0608139103.
  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H. et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in arabidopsis. Nature. 2004;427(6977):858–861. doi:10.1038/nature02353.
  • Alamdari K, Fisher KE, Sinson AB, Chory J, Woodson JD. Roles for the chloroplast-localized pentatricopeptide repeat protein 30 and the ‘mitochondrial’ transcription termination factor 9 in chloroplast quality control. Plant J. 2020;103(3):735–751. doi:10.1111/tpj.14963.
  • Alamdari K, Fisher KE, Tano DW, Rai S, Palos KR, Nelson ADL, Woodson JD. Chloroplast quality control pathways are dependent on plastid DNA synthesis and nucleotides provided by cytidine triphosphate synthase two. New Phytol. 2021;231(4):1431–1448. doi:10.1111/nph.17467.
  • Jeran N, Rotasperti L, Frabetti G, Calabritto A, Pesaresi P, Tadini L. The PUB4 E3 ubiquitin ligase is responsible for the variegated phenotype observed upon alteration of chloroplast protein homeostasis in arabidopsis cotyledons. Genes. 2021;12(9):1387. doi:10.3390/genes12091387.
  • Lemke MD, Woodson JD. Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts. Plant Signal Behav. 2022;17(1):2084955. doi:10.1080/15592324.2022.2084955.
  • Tano DW, Kozlowska MA, Easter RA, Woodson JD. Multiple pathways mediate chloroplast singlet oxygen stress signaling. Plant Mol Biol. 2023;111(1–2):167–187. doi:10.1007/s11103-022-01319-z.
  • Greenberg JT, Guo A, Klessig DF, Ausubel FM. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994;77(4):551–563. doi:10.1016/0092-8674(94)90217-8.
  • Mach JM, Castillo AR, Hoogstraten R, Greenberg JT. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A. 2001;98(2):771–776. doi:10.1073/pnas.98.2.771.
  • Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book. 2011;9:e0145. doi:10.1199/tab.0145.
  • Pruzinská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell. 2007;19(1):369–387. doi:10.1105/tpc.106.044404.
  • Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andres CB, Kessler F, Hörtensteiner S, Paek N-C. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell. 2012;24(2):507–518. doi:10.1105/tpc.111.089474.
  • Yao N, Greenberg JT. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell. 2006;18(2):397–411. doi:10.1105/tpc.105.036251.
  • Pattanayak GK, Venkataramani S, Hortensteiner S, Kunz L, Christ B, Moulin M, Smith AG, Okamoto Y, Tamiaki H, Sugishima M. et al. Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant Journal. 2012;69(4):589–600. doi:10.1111/j.1365-313X.2011.04814.x.
  • Pang Z, Zhang L, Coaker G, Ma W, He SY, Wang N. Citrus CsACD2 is a target of candidatus liberibacter asiaticus in huanglongbing disease. Plant Physiol. 2020;184(2):792–805. doi:10.1104/pp.20.00348.
  • Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmüller R. The OXI1 kinase pathway mediates piriformospora indica-induced growth promotion in arabidopsis. PLOS Pathog. 2011;7(5):e1002051. doi:10.1371/journal.ppat.1002051.
  • Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 2012;40(D1):D1211–5. doi:10.1093/nar/gkr1047.
  • Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in arabidopsis and other plants. Plant Journal. 2007;51(6):1126–1136. doi:10.1111/j.1365-313X.2007.03212.x.
  • Healey A, Furtado A, Cooper T, Henry RJ. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10(1):21. doi:10.1186/1746-4811-10-21.
  • Lemke MD, Fisher KE, Kozlowska MA, Tano DW, Woodson JD. The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. BMC Plant Biol. 2021;21(1):21. doi:10.1186/s12870-021-03119-x.
  • Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. Front Plant Sci. 2024;14:14. doi:10.3389/fpls.2023.1331346.
  • Daudi A, O’Brien JA. Detection of hydrogen peroxide by DAB staining in arabidopsis leaves. Bio Protoc. 2012;2(18). doi:10.21769/BioProtoc.263.
  • Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M. Selective elimination of membrane-damaged chloroplasts via microautophagy. Plant Physiol. 2018;177(3):1007–1026. doi:10.1104/pp.18.00444.
  • Woodson JD. Control of chloroplast degradation and cell death in response to stress. Trends Biochem Sci. 2022;47(10):851–864. doi:10.1016/j.tibs.2022.03.010.
  • D’Alessandro S, Beaugelin I, Havaux M. Tanned or sunburned: how excessive light triggers plant cell death. Mol Plant. 2020;13(11):1545–1555. doi:10.1016/j.molp.2020.09.023.
  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell, S, Wilson, MT, Baker, NR. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green. J Exp Bot. 2006;57(8):1725–1734. doi:10.1093/jxb/erj181.
  • Prasad A, Sedlarova M, Pospisil P. Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci Rep. 2018;8(1):13685. doi:10.1038/s41598-018-31638-5.
  • Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci USA. 2013;110(35):14474–14479. doi:10.1073/pnas.1311632110.
  • Desaki Y, Takahashi S, Sato K, Maeda K, Matsui S, Yoshimi I, Miura T, Jumonji J-I, Takeda J, Yashima K. et al. PUB4, a CERK1-interacting ubiquitin ligase, positively regulates MAMP-Triggered immunity in arabidopsis. Plant Cell Physiol. 2019;60(11):2573–2583. doi:10.1093/pcp/pcz151.
  • Wang Y, Wu Y, Zhong H, Chen S, Wong KB, Xia Y. Arabidopsis PUB2 and PUB4 connect signaling components of pattern-triggered immunity. New Phytol. 2022;233(5):2249–2265. doi:10.1111/nph.17922.
  • Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL. et al. The arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. Embo J. 2022;41(23):e107257. doi:10.15252/embj.2020107257.