369
Views
0
CrossRef citations to date
0
Altmetric
Short communication

A pharmacological approach to investigating effector translocation in rice-Magnaporthe oryzae interactions

ORCID Icon & ORCID Icon
Article: 2350869 | Received 08 Feb 2024, Accepted 26 Apr 2024, Published online: 09 May 2024

References

  • Panstruga R, Dodds PN. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science. 2009;324(5928):748–5. doi:10.1126/science.1171652.
  • Giraldo MC, Valent B. Filamentous plant pathogen effectors in action. Nat Rev Microbiol. 2013;11(11):800. doi:10.1038/nrmicro3119.
  • Petre B, Kamoun S, McDowell JM. How do filamentous pathogens deliver effector proteins into plant cells? PLOS Biol. 2014;12(2):e1001801. doi:10.1371/journal.pbio.1001801.
  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66(1):513–545. doi:10.1146/annurev-arplant-043014-114623.
  • Oliveira-Garcia E, Valent B. How eukaryotic filamentous pathogens evade plant recognition. Curr Opin Microbiol. 2015;26:92–101. doi:10.1016/j.mib.2015.06.012.
  • Oliveira-Garcia E, Tamang TM, Park J, Dalby M, Martin-Urdiroz M, Rodriguez Herrero C, Vu AH, Park S, Talbot NJ, Valent B. et al. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. Plant Cell. 2023;35(7):2527–2551. doi:10.1093/plcell/koad094.
  • Oliveira-Garcia E, Valent B. “Characterizing the secretion systems of Magnaporthe oryzaeMagnaporthe oryzae”. In: Jacob S. editor. Magnaporthe oryzae: methods and protocols. New York, NY: Springer US; 2021. p. 69–77. doi:10.1007/978-1-0716-1613-0_5.
  • Valent B, Singh PK, He X, Farman M, Tosa Y, Braun HJ. “Blast diseases: evolution and challenges of a staple food crop fungal pathogen”. In: Records JBRAA. editor. Emerging plant diseases and global food security. St. Paul, MN: American Phytopathological Society Press; 2020. p. 267–292. doi:10.1094/9780890546383.013.
  • Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell. 2007;19(2):706–724. doi:10.1105/tpc.106.046300.
  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park S-Y, Czymmek K, Kang S, Valent B. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell. 2010;22(4):1388–1403. doi:10.1105/tpc.109.069666.
  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ. et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 2012;24(1):322–335. doi:10.1105/tpc.111.092957.
  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell. 2009;21(4):1273–1290. doi:10.1105/tpc.107.055228.
  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M. et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in rice. Plant Cell. 2012;24(11):4748–4762. doi:10.1105/tpc.112.105429.
  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B. et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun. 2013;4(1):1996–1996. doi:10.1038/ncomms2996.
  • Khang CH, Park S-Y, Lee Y-H, Kang S. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol. 2005;42(6):483–492. doi:10.1016/j.fgb.2005.03.004.
  • Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O, Viotti C, Swerts J, Fendrych M, Ortiz-Morea FA, Mishev K. et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat Commun. 2016;7(1):11710. doi:10.1038/ncomms11710.
  • Dejonghe W, Sharma I, Denoo B, De Munck S, Lu Q, Mishev K, Bulut H, Mylle E, De Rycke R, Vasileva M. et al. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat Chem Biol. 2019;15(6):641–649. doi:10.1038/s41589-019-0262-1.
  • Wang H, Wang S, Wang W, Xu L, Welsh LRJ, Gierlinski M, Whisson SC, Hemsley PA, Boevink PC, Birch PRJ. et al. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. Plant Cell. 2023;35(7):2504–2526. doi:10.1093/plcell/koad069.
  • Wang H, Oliveira-Garcia E, Boevink PC, Talbot NJ, Birch PR, Valent B. Filamentous pathogen effectors enter plant cells via endocytosis. Trends Plant Sci. doi:10.1016/j.tplants.2023.07.015.