2,444
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Mini-review on the novel synthesis and potential applications of carbazole and its derivatives

, , & ORCID Icon
Pages 90-105 | Received 30 Jan 2023, Accepted 19 Mar 2023, Published online: 29 Mar 2023

References

  • Graebe C, Ullmann F.Ann., 1896, 291, 16.(b)Drechsel,E.J.Prakt.Chem, 1858, 38, 69.
  • Preston RWG, Tucker SH, Cameron JMLJCS, 1942, 500.
  • Bucherer HTJ. Prakt.Chem., 1904, 69, 49. (b) Borsche, W.; Feise, M. Ber. Über die Einwirkung schwefligsaurer Salze auf aromatische Amido- und Hydroxylverbindungen. J für Praktische Chemie. 1904;(1): 378. 10.1002/prac.19040690105
  • Yu MJ, Chen ZJ, Lu DDD. J Am Chem Soc. 2007;129(47):14534–14535.
  • Chen MW, Gan LZ . Org.Hetero.Compd.Higher.Edu Press, Bei jing, 1990, p. 56.
  • Sanz R, Escribano J, Pedrosa MR, et al. Dioxomolybdenum(vi)-Catalyzed Reductive Cyclization of Nitroaromatics. Synthesis of Carbazoles and Indoles. Adv Synth Catal. 2007;349(4–5):713.
  • Naffziger MR, Ashburn BO, Perkins JR, et al. Diels−alder approach for the construction of Halogenated, o-Nitro Biaryl templates and application to the total synthesis of the Anti-HIV agent Siamenol. J Org Chem. 2007;72(26):9857.
  • Creencia EC, Kosaka M, Muramatsu T, et al. Microwave‐assisted Cadogan reaction for the synthesis of 2‐aryl‐2H‐indazoles, 2‐aryl‐1H‐benzimidazoles, 2‐carbonylindoles, carbazole, and phenazine. J Heterocycl Chem. 2009;46:1309–1317.
  • Pudlo M, Csanyi D, Moreau F, et al. First Suzuki–Miyaura type cross-coupling of ortho-azidobromobenzene with arylboronic acids and its application to the synthesis of fused aromatic indole-heterocycles. J Tetrahedron. 2007;63(41):10320.
  • Stokes BJ, Jovanovic B, Dong HJ, et al. Rh(2)(II)-catalyzed synthesis of carbazoles from biaryl azides. J Org Chem. 2009;74(8):3225–3228.
  • Shou WG, Li JA, Guo TX, et al. Ruthenium-Catalyzed Intramolecular Amination Reactions of Aryl- and Vinylazides. C Organometallics. 2009;28(24):6847.
  • Jean DJS, Poon SF, Schwarzbach JLOL. A Tandem Cross-Coupling/SNAr Approach to Functionalized Carbazoles. Org Lett. 2007;9(23):4893.
  • Jordan-Hore JA, Johansson CCC, Gulias M, et al. Oxidative Pd(II)-Catalyzed C−H Bond Amination to Carbazole at Ambient Temperature. J J Am Chem Soc. 2008;130(48):16184.
  • Tsang WCP, Munday RH, Brasche G, et al. A Palladium-Catalyzed Method for the Synthesis of Carbazoles via Tandem C-H Functionalization and C-N Bond Formation. J Org Chem. 2008;73(19):7603–7610.
  • Li BH, Tian SL, Fang Z, et al. Multiple C?H Activations To Construct Biologically Active Molecules in a Process Completely Free of Organohalogen and Organometallic Components. Angewandte Chemie. 2008;47(6):1115.
  • Kajiyama D, Inoue K, Ishikawa Y, et al. A synthetic approach to carbazoles using electrochemically generated hypervalent iodine oxidant. Tetrahedron. 2010;66(52):9779.
  • Cho SH, Yoon J, Chang SJ. Intramolecular Oxidative C−N Bond Formation for the Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed and Metal-Free Conditions. Am Chem Soc. 2011;133(15):5996.
  • Ueno A, Kitawaki T, Chida N. Total Synthesis of (±)-Murrayazoline. Org Lett. 2008;10(10):1999.
  • Davis ME. Ordered porous materials for emerging applications. Nature. 2002;417(6891):813–821.
  • Morris RE, Wheatley PS. Tandem Modification of Metal–Organic Frameworks by a Postsynthetic Approach. Angew Chem Int Ed. 2008;47(27):4699–4781.
  • Weder C. Hole Control in Microporous Polymers. Angew Chem Int Ed. 2008;47(3):448–450.
  • Jiang JX, Su F, Trewin A. Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks. J Am Chem Soc. 2008;130(24):7710–7720.
  • Tsyurupa MP, Davankov VA. React. Funct Polym. 2002;53(2–3):193–203.
  • Germain J, Fréchet JMJ, Svec F. Nanoporous Polymers for Hydrogen Storage. Small. 2009;5(10):1098 1111.
  • Ahn JH, Jang JE, Oh CG. Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, and Surface Area in Davankov-Type Hyper-Cross-Linked Resins. Macromolecules. 2006; 39(2): 627 632. Macromolecules. 10.1021/ma051152n
  • Lee JY, Wood CD, Bradshaw D. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun. 2006;42(25):2670–2672.
  • Germain J, Hradil J, Fréchet JMJ. High Surface Area Nanoporous Polymers for Reversible Hydrogen Storage. Chem mater. 2006;18(18):4430–4435.
  • Wood CD, Tan B, Trewin A. Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chem Mater. 2007;19(8):2034–2048.
  • Yuan S, Kirklin S, Dorney B. Macromolecules. 2009;42(5):1554–1559. DOI:10.1021/ma802394x
  • McKeown NB, Budd PM, Msayib KJ. Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chem: Eur J. 2005;11(9):2610–2620.
  • McKeown NB, Makhseed S, Budd PM. Phthalocyanine-based nanoporous network polymers. Chem Commun. 2002;38(23):2780–2781.
  • McKeown NB, Hanif S, Msayib K. Porphyrin-based nanoporous network polymers. Chem Commun. 2002;38(23):2782–2783.
  • McKeown NB. Phthalocyanine-containing polymers. J Mater Chem. 2000;10(9):1979–1995.
  • Ghanem BS, Hohammed M, Harris KDMM. Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules. 2010;43(12):5287–5294.
  • Budd PM, Elabas ES, Ghanem BS. Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Mater. 2004;16(5):456 459.
  • Ghanem BS, McKeown NB, Budd PM. Adv. Mater. 2008;20(14):2766–2771.
  • Weber J, Su Q, Antonietti M. M Rapid Commun. 2007;28(18–19):1871–1876. DOI:10.1002/marc.200700346
  • Weber J, Antonietti M, Thomas A. Macromolecules. 2008;41(8):2880–2885. DOI:10.1021/ma702495r
  • Hasell T, Wood CD, Clowes R. Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing. Chem Mater. 2010;22(2):557–564.
  • McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev. 2006;35(8):675–683.
  • Jiang JX, Su F, Trewin A. Conjugated Microporous Poly(aryleneethynylene) Networks. Angew Chem Int Ed. 2007;46(45):8574–8578.
  • Weber J, Thomas A. J Am Chem Soc. 2008;130(20):6334–6335. DOI:10.1021/ja801691x
  • Jiang JX, Su F, Niu H. Conjugated microporous poly(phenylene butadiynylene)s. Chem Commun. 2008;44(4):486–488.
  • Rose M, Böhlmann W, Saboa M. Element–organic frameworks with high permanent porosity. Chem Commun. 2008;44(21):2462–2464.
  • Dawson R, Su F, Niu, et al. H. Macromolecule. 2008;41(5):1591–1593.
  • Germain J, Fréchet JMJ, Svec FJ. Mater. Chem. 2007;17(47):4989–4997.
  • Kuhn K, Antonietti M, Thomas A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Chem Int Ed. 2008;47(18):3450–3453.
  • Mishra A, Ma CQ, Bäuerla P. Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications. Chem Rev. 2009;109(3):1141–1276.
  • Côté AP, Benin AI, Ockwig NW, et al. Porous, Crystalline, Covalent Organic Frameworks. Science. 2005;310:1166–1170.
  • El-Kaderi HM, Hunt JR, Mendoza-Cortés JL. Designed Synthesis of 3D Covalent Organic Frameworks. Science. 2007;316(5822):268–272. DOI:10.1126/science.1139915
  • Tilford RW, Mugavero ISJ, Pellechia PJ. Tailoring Microporosity in Covalent Organic Frameworks. Adv Mater. 2008;20(14):2741–2746.
  • Wan S, Guo J, Kim. A Photoconductive Covalent Organic Framework: Self-Condensed Arene Cubes Composed of Eclipsed 2D Polypyrene Sheets for Photocurrent Generation. J Angew Chem Int Ed. 2009;48(30):5439–5442.