662
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Ethylene polymerization using N-Heterocyclic carbene complexes of silver and aluminum

, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 182-189 | Received 28 Dec 2022, Accepted 21 Jun 2023, Published online: 05 Jul 2023

References

  • Hakim S, Nekoomanesh M, Shahrokhinia A. The effect of mixed and individual silane external donors on the stereo-defect distribution, active sites and properties of polypropylene synthesized with fourth generation Ziegler—Natta catalyst. Polym Sci Ser A. 2015;57(5):573. doi: 10.1134/S0965545X15050090
  • Kang J, Yang F, Wu T, et al. Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J. 2012;48(2):425. doi: 10.1016/j.eurpolymj.2011.11.023
  • Kim SY, Hiraoka Y, Taniike T, et al. External donor induced direct contact effects on Mg(OC2H5)2-based Ziegler-natta catalysts for propylene polymerization. Macromol Symp. 2009;285(1):115. doi: 10.1002/masy.200951114
  • Takeuchi D. Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions. Dalton Trans. 2010;39(2):311. doi: 10.1039/B911992B
  • Fujisawa K, Nabika M. Development of new polymerization catalysts with manganese(II) complexes. Coord Chem Rev. 2013;257(1):119. doi: 10.1016/j.ccr.2012.05.040
  • Nabika M, Seki Y, Miyatake T, et al. Manganese catalysts with scorpionate ligands for olefin polymerization. Organometallics. 2004;23(19):4335. doi: 10.1021/om049756n
  • Nabika M, Kiuchi S, Miyatake T, et al. Manganese(ii) halogeno complexes with neutral tris(3,5-diisopropyl-1-pyrazolyl)methane ligand: synthesis and ethylene polymerization. J Mol Catal A Chem. 2007;269(1–2):163. doi: 10.1016/j.molcata.2006.12.043
  • Yliheikkilä K, Axenov K, Räisänen MT, et al. Manganese(ii) Complexes in Ethene Polymerization. Organometallics. 2007;26(4):980. doi: 10.1021/om0608105
  • Sood A, Raisanen M, Aitola E, et al. Polyhedron. 2013;56:221. doi: 10.1016/j.poly.2013.03.063
  • Galletti AMR, Pampaloni G. Niobium complexes as catalytic precursors for the polymerization of olefins. Coord Chem Rev. 2010;254(5–6):525. doi: 10.1016/j.ccr.2009.07.026
  • Marchetti F, Pampaloni G, Patil Y, et al. Easily available niobium(V) mixed chloro-alkoxide complexes as catalytic precursors for ethylene polymerization. J Polym Sci Part A. 2011;49(7):1664. doi: 10.1002/pola.24591
  • Redshaw C, Rowan M, Homden DM, et al. Niobium- and tantalum-based ethylene polymerisation catalysts bearing methylene- or dimethyleneoxa-bridged calixarene ligands. Chem: Eur J. 2007;13(36):10129. doi: 10.1002/chem.200700893
  • Pritchard HM, Etienne M, Vendier L, et al. Elusive niobium alkyl cations related to ethylene polymerization. Organometallics. 2004;23(6):1203. doi: 10.1021/om034395h
  • Jaffart J, Nayral C, Choukroun R, et al. Ethylene polymerization with hydridotris(pyrazolyl)boratoniobium complexes as precursors. Eur J Inorg Chem. 1998;425(4):425. doi: 10.1002/(SICI)1099-0682(199804)1998:4<425:AID-EJIC425>3.0.CO;2-L
  • Mashima K, Fujikawa S, Urata H, et al. Polyethylene with extremely narrow polydispersity obtained from the new catalyst systems Nb(η5-C5Me5)(η4-diene)Cl2–MAO and Nb(η5-C5Me5)(η4-diene)2–MAO . J Chem Soc, Chem Commun. 1994;1623. doi: 10.1039/C39940001623
  • Toda T, Nakata N, Matsuo T, et al. Synthesis, structure, and 1-hexene polymerization catalytic ability of group 5 metal complexes incorporating an [OSSO]-type ligand. ACS Catal. 2013;38:1764. doi: 10.1021/cs4003996
  • Hakala K, Lofgren B, Palamo M, et al. Ethylene polymerizations with novel tantalum(V) aminopyridinato complex/MAO systems. Macromol Rapid Commun. 1997;18(8):635. doi: 10.1002/marc.1997.030180802
  • Mashima K, Fujikawa S, Nakamura A. Polymerization of ethylene catalyzed by a tantalum system Ta(η3-C5Me5) (η4-diene)(CH3)2/MAO: an isoelectronic analog for group 4 metallocene catalyst (MAO = methylaluminoxane). J Am Chem Soc. 1993;115(23):10990. doi: 10.1021/ja00076a067
  • Piche L, Daigle J-C, Claverie JP. A ruthenium catalyst yielding crosslinked polyethylene. Chem Commun. 2011;47(27):7836. doi: 10.1039/c1cc11677k
  • Camacho-Fernandez MA, Yen M, Ziller JW, et al. Direct observation of a cationic ruthenium complex for ethylene insertion polymerization. Chem Sci. 2013;4(7):2902. doi: 10.1039/c3sc50676b
  • Friedberger T, Ziller JW, Guan Z. Ruthenium(iv) Complexes for ethylene insertion polymerization. Organometallics. 2014;33(8):1913. doi: 10.1021/om5001343
  • Wang X, Jin G-X. Preparation, structure, and ethylene polymerization behavior of half-sandwich picolyl-functionalized carborane iridium, ruthenium, and rhodium complexes. Chem: Eur J. 2005;11(19):5758. doi: 10.1002/chem.200500280
  • Nomura K, Warit S, Imanishi Y. Olefin polymerization by the (Pybox)RuX2 (ethylene)−MAO catalyst system. Macromolecules. 1999;32(14):4732. doi: 10.1021/ma981957d
  • Hou X-F, Cheng Y-Q, Wang X, et al. Half-sandwich cyclopentadienyl rhodium complexes bearing pendant sulfur or oxygen ligands and their catalytic behaviors in ethylene polymerization. J Organomet Chem. 2005;690(7):1855. doi: 10.1016/j.jorganchem.2005.02.015
  • Wang L, Sowa JR Jr., Wang C, et al. XPS Investigations of (1,4,7-trimethyl-1,4,7-triazacyclononane)RhMe3 and [1,1,1-tris((dimethylphosphino)methyl)ethane]RhMe3 and their RH−C cleavage derivatives. comparison of hard- and soft-ligated rhodium organometallics. Organometallics. 1996;15(20):4240. doi: 10.1021/om9601099
  • Wang L, Lu RS, Bau R, et al. Coordination polymerization of ethylene by single-component rhodium catalysts in protic solvents. J Am Chem Soc. 1993;115(15):6999. doi: 10.1021/ja00068a078
  • Wang L, Flood TC. Ethylene insertion into the rhodium-methyl bond in chelated tris(tertiary amine) complexes. A new class of Group 9 organometallic complexes. J Am Chem Soc. 1992;114(8):3169. doi: 10.1021/ja00034a089
  • Timonen S, Pakkanen TT, Pallanen TA. Novel single-site catalysts containing a platinum group metal and a macrocyclic sulfur ligand for ethylene polymerization. J Mol Catal A Chem. 1996;111(3):267. doi: 10.1016/1381-1169(96)00201-4
  • Gibson VC, Tomov A, Wass DF, et al. Ethylene polymerisation by a copper catalyst bearing α-diimine ligands. J Chem Soc Dalton Trans. 2002;11:2261. doi: 10.1039/b202386e
  • Stibrany RT, Schulz DN, Kacker S, et al. Polymerization and copolymerization of olefins and acrylates by bis(benzimidazole) copper catalysts. Macromolecules. 2003;36(23):8584. doi: 10.1021/ma034548c
  • Bushuev MB, Krivopalov VP, Lider EV, et al. Copper(ii) complexes with 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-methyl-6-phenylpyrimidine: syntheses, crystal structures and catalytic activity in ethylene polymerization. Polyhedron. 2012;31(1):235. doi: 10.1016/j.poly.2011.09.024
  • Olson JA, Boyd R, Quail JW, et al. Copper(ii) ethylene polymerization catalysts: do they really exist? Organometallics. 2008;27(20):5333. doi: 10.1021/om800625f
  • Wang X, Liu S, Weng L-H, et al. A trinuclear silver(i) functionalized N-heterocyclic carbene complex and its use in transmetalation: structure and catalytic activity for olefin polymerization. Organometallics. 2006;25(15):3565. doi: 10.1021/om060309c
  • See RT, Kawahara T, Shinto Y, et al. MMAO is a methylaluminoxane obtained from the hydrolysis of a mixture of iBu3Al and Me3Al. Macromolecules. 2017;50(15):5989. doi: 10.1021/acs.macromol.7b01003
  • Bair HE, Saolovey R. The effect of molecular weight on the structure and thermal properties of polyethylene. J Macromol Sci Phys B. 1969;3(1):3. doi: 10.1080/00222346908217085
  • Uehara H, Nakae M, Kanamoto T, et al. Structural characterization of ultrahigh-molecular-weight polyethylene reactor powders based on fuming nitric acid etching. Polymer. 1998;39(24):6127. doi: 10.1016/S0032-3861(98)00102-5
  • Wu M, Gill AM, Yunpeng L, et al. Synthesis, structural studies and ligand influence on the stability of aryl-NHC stabilised trimethylaluminium complexes. Dalton Trans. 2015;44(34):15166. doi: 10.1039/C5DT00079C
  • Schnee G, Faza ON, Specklin D, et al. Normal-to-abnormal NHC rearrangement of AlIII, GaIII, and InIII trialkyl complexes: scope, mechanism, reactivity studies, and H2 activation. Chem: Eur J. 2015;21(49):17959. doi: 10.1002/chem.201503000
  • Schnee G, Bolley A, Gourlaouen C, et al. Synthesis and structural characterization of NHC-stabilized Al(III) and Ga(III) alkyl cations and use in the ring-opening polymerization of lactide. J Organomet Chem. 2016;820:8. doi: 10.1016/j.jorganchem.2016.07.019
  • Schnee G, Bolley A, Hild F, et al. Group 13 metal (Al, Ga, In) alkyls supported by N-heterocyclic carbenes for use in lactide ring-opening polymerization catalysis. Catal Today. 2017;289:204. doi: 10.1016/j.cattod.2016.08.019
  • Mikhaylov VN, Kazakov IV, Parfeniuk TN, et al. The carbene transfer to strong Lewis acids: copper is better than silver. Dalton Trans. 2021;50(8):2872. doi: 10.1039/D1DT00235J
  • Coles MP, Jordan RF. Cationic aluminum alkyl complexes incorporating amidinate ligands. transition-metal-free ethylene polymerization catalysts. J Am Chem Soc. 1997;119(34):8125. doi: 10.1021/ja971815j
  • Bruce M, Gibson VC, Redshaw C, et al. Cationic alkyl aluminium ethylene polymerization catalysts based on monoanionic N,N,N-pyridyliminoamide ligands. Chem Commun. 1998;(22):2523. doi: 10.1039/a807950a
  • Ihara E, Young VG Jr., Jordan RF. Cationic aluminum alkyl complexes incorporating aminotroponiminate ligands. J Am Chem Soc. 1998;120(32):8277. doi: 10.1021/ja9817444
  • Cameron PA, Gibson VC, Redshaw C, et al. Pendant arm Schiff base complexes of aluminium as ethylene polymerisation catalysts. Chem Commun. 1999;(18):1883. doi: 10.1039/a905120a
  • Kim JS, Wojcinski LM, Liu S, et al. Novel aluminum-based, transition metal-free, catalytic systems for homo- and copolymerization of alkenes. J Am Chem Soc. 2000;122(23):5668. doi: 10.1021/ja0010960
  • Cavell RG, Aparna K, Babu RPK, et al. Aluminum bis(iminophosphorano)methanide and methandiide complexes—transition metal-free ethylene polymerization cationic catalyst precursors. J Mol Catal A Chem. 2002;189(1):137. doi: 10.1016/S1381-1169(02)00205-4
  • Catalano VC, Moore AL. Mono-, Di-, and Trinuclear Luminescent Silver(I) and Gold(I) N-Heterocyclic Carbene Complexes Derived from the Picolyl-Substituted Methylimidazolium Salt: 1-Methyl-3-(2-pyridinylmethyl)-1H-imidazolium Tetrafluoroborate. Inorg Chem. 2005;44(19):6558. doi: 10.1021/ic050604+
  • Beillard A, Golliard E, Gillet V, et al. Expedient mechanosynthesis of N,N-Dialkyl imidazoliums and silver(I)-carbene complexes in a ball-mill. Chem: Eur J. 2015;21(49):17614. doi: 10.1002/chem.201503472
  • Tulloch AAD, Danopoulos AA, Winston S, et al. N-Functionalised heterocyclic carbene complexes of silver. J Chem Soc Dalton Trans. 2000;24:4499. doi: 10.1039/b007504n
  • Zhang X, Gu S, Xia Q, et al. New structural motifs of silver and gold complexes of pyridine-functionalized benzimidazolylidene ligands. J Organomet Chem. 2009;694(15):2359. doi: 10.1016/j.jorganchem.2009.03.031
  • Beillard A, Bantreil X, Metro T-X, et al. Unraveling the synthesis of homoleptic [Ag(N,N-diaryl-NHC)2]Y (Y = BF4, PF6) complexes by ball-milling. Dalton Trans. 2016;45(44):17859. doi: 10.1039/C6DT03564G
  • Pisano G, Cazin CSJ. General mechanochemical synthetic protocol to late transition metal–NHC (N-Heterocyclic Carbene) complexes. ACS Sustainable Chem Eng. 2021;9(29):9625. doi: 10.1021/acssuschemeng.1c00556