592
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Influencing ionic conductivity and mechanical properties of ionic liquid polymer electrolytes by designing the chemical monomer structure

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 198-213 | Received 27 Jun 2023, Accepted 03 Oct 2023, Published online: 11 Oct 2023

References

  • IRENA. Utility-scale batteries innovation landscape brief. Int Renew Energy Agency. 2019;7. InternetAvailable from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Utility-scale-batteries_2019.pdf
  • Rollo-Walker G, Malic N, Wang X, et al. Development and progression of polymer electrolytes for batteries: influence of structure and chemistry. Polymers. 2021;13(23):1–20. doi: 10.3390/polym13234127
  • Boaretto N, Meabe L, Martinez-Ibañez M, et al. Review—polymer electrolytes for rechargeable batteries: from nanocomposite to Nanohybrid. J Electrochem Soc. 2020;167(7):070524. doi: 10.1149/1945-7111/ab7221
  • Maia BA, Magalhães N, Cunha E, et al. Designing versatile polymers for lithium-ion battery applications: a review. Polymers. 2022;14(3):14. doi: 10.3390/polym14030403
  • Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem. 2019;5(9):2326–2352. InternetAvailable from. doi: 10.1016/j.chempr.2019.05.009
  • Forsyth M, Porcarelli L, Wang X, et al. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res. 2019;52(3):686–694. doi: 10.1021/acs.accounts.8b00566
  • Porcarelli L, Shaplov AS, Bella F, et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 2016;1(4):678–682. doi: 10.1021/acsenergylett.6b00216
  • Muldoon J, Bucur CB, Boaretto N, et al. Polymers: opening doors to future batteries. Polym Rev. 2015;55(2):208–246. doi: 10.1080/15583724.2015.1011966
  • Aziz SB, Woo TJ, Kadir MFZ, et al. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mat Dev. 2018;3(1):1–17. doi: 10.1016/j.jsamd.2018.01.002
  • Eshetu GG, Mecerreyes D, Forsyth M, et al. Polymeric ionic liquids for lithium-based rechargeable batteries. Mol Syst Des Eng. 2019;4(2):294–309. doi: 10.1039/C8ME00103K
  • Muench S, Wild A, Friebe C, et al. Polymer-based organic batteries. Chem Rev. 2016;116(16):9438–9484. doi: 10.1021/acs.chemrev.6b00070
  • Janoschka T, Hager MD, Schubert US. Powering up the future: radical polymers for battery applications. Adv Mater. 2012;24(48):6397–6409. doi: 10.1002/adma.201203119
  • Friebe C, Schubert US. High-Power-density organic radical batteries. Top Curr Chem (Z). 2017;375(1). doi: 10.1007/s41061-017-0103-1
  • Wild A, Strumpf M, Häupler B, et al. All-organic battery composed of thianthrene- and TCAQ-Based polymers. Adv Energy Mater. 2017;7(5):1–9. doi: 10.1002/aenm.201601415
  • Hagemann T, Strumpf M, Schröter E, et al. Polymer-based batteries—flexible and thin energy storage systems. Adv Mater. 2020;32(39):525–530. doi: 10.1002/adma.202000587
  • Friebe C, Lex-Balducci A, Schubert US. Sustainable energy storage: recent trends and developments toward fully organic batteries. ChemSuschem. 2019;12(18):4093–4115. doi: 10.1002/cssc.201901545
  • Winsberg J, Muench S, Hagemann T, et al. Polymer/Zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polym Chem. 2016;7(9):1711–1718. doi: 10.1039/C5PY02036K
  • Muench S, Burges R, Lex-Balducci A, et al. Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Mater. 2020;25:750–755. doi: 10.1016/j.ensm.2019.09.011
  • Muench S, Burges R, Lex-Balducci A, et al. Adaptation of electrodes and printable gel polymer electrolytes for optimized fully organic batteries. J Polym Sci. 2021;59(6):494–501. doi: 10.1002/pol.20200746
  • Ehrlich L, Pospiech D, Muza UL, et al. Chloride ion-containing Polymeric ionic liquids for application as electrolytes in solid-state batteries. Macromol Chem Phys. 2023;224(4):224. doi: 10.1002/macp.202300015
  • Röchow ET, Coeler M, Pospiech D, et al. In situ Preparation of crosslinked polymer electrolytes for lithium ion batteries: a comparison of monomer systems. Polymers. 2020;12(8):1707. doi: 10.3390/polym12081707
  • Delhorbe V, Bresser D, Mendil-Jakani H, et al. Unveiling the ion conduction mechanism in imidazolium-based poly (ionic liquids): a comprehensive investigation of the structure- to-transport interplay. Macromolecules. 2017;50(11):4309–4321. doi: 10.1021/acs.macromol.7b00197
  • Kalhoff J, Eshetu GG, Bresser D, et al. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSuschem. 2015;8(13):2154–2175. doi: 10.1002/cssc.201500284
  • Mecerreyes D. Progress in polymer science Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci. 2011;36(12):1629–1648. InternetAvailable from. doi: 10.1016/j.progpolymsci.2011.05.007.
  • Schröter E, Elbinger L, Mignon M, et al. High-capacity semi-organic polymer batteries: from monomer to battery in an all-aqueous process. J Power Sources. 2023;556:556. doi: 10.1016/j.jpowsour.2022.232293
  • Khuyen NQ, Zondaka Z, Harjo M, et al. Comparative analysis of fluorinated anions for polypyrrole linear actuator electrolytes. Polymers. 2019;11(5):11. doi: 10.3390/polym11050849
  • Database of Ionic Radii. London. http://abulafia.mt.ic.ac.uk/shannon/ptable.php
  • Choi UH, Mittal A, Price TL, et al. Molecular volume effects on the Dynamics of polymerized ionic liquids and their monomers. Electrochim Acta. 2015;175:55–61. doi: 10.1016/j.electacta.2014.12.140. InternetAvailable from.
  • Lewandowski A, Świderska-Mocek A. Ionic liquids as electrolytes for li-ion batteries—an overview of electrochemical studies. J Power Sources. 2009;194(2):601–609. doi: 10.1016/j.jpowsour.2009.06.089
  • Liu QS, Li PP, Welz-Biermann U, et al. Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J Chem Thermodyn InternetAvailable from. 2013;66:88–94. doi: 10.1016/j.jct.2013.06.008
  • Sun L, Morales-Collazo O, Xia H, et al. Effect of structure on transport properties (viscosity, ionic conductivity, and Self-diffusion coefficient) of aprotic heterocyclic anion (AHA) room-temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B. 2015;119(48):15030–15039. doi: 10.1021/acs.jpcb.5b09175
  • Tokuda H, Hayamizu K, Ishii K, et al. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B. 2004;108(42):16593–16600. doi: 10.1021/jp047480r
  • Green MD, Salas-De La Cruz D, Ye Y, et al. Alkyl-substituted N-vinylimidazolium polymerized ionic liquids: thermal properties and ionic conductivities. Macromol Chem Phys. 2011;212(23):2522–2528. doi: 10.1002/macp.201100389
  • Rhoades TC, Wistrom JC, Daniel Johnson R, et al. Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. Polymer (Guildf). 2016;100:1–9. doi: 10.1016/j.polymer.2016.08.010. InternetAvailable from.
  • Tracy CA, Adler AM, Nguyen A, et al. Covalently crosslinked 1,2,3-triazolium-containing polyester networks: thermal, mechanical, and conductive properties. ACS Omega. 2018;3(10):13442–13453. doi: 10.1021/acsomega.8b01949
  • Ganesan V. Ion transport in polymeric ionic liquids: recent developments and open questions. Mol Syst Des Eng. 2019;4(2):280–293. doi: 10.1039/C8ME00114F
  • Singh B, Sekhon SS. Ion conducting behaviour of polymer electrolytes containing ionic liquids. Chem Phys Lett. 2005;414(1–3):34–39. doi: 10.1016/j.cplett.2005.08.046
  • Sommer JU, Saalwächter K. Segmental order parameters and swelling in polymer networks. Macromol Symp. 2010;291–292(1):251–257. doi: 10.1002/masy.201050529
  • Barton AFM. Solubility parameters. Chem Rev. 1975;75(6):731–753. doi: 10.1021/cr60298a003
  • Branno-Peppas RSH L. Absorbent polymer technology. Elsevier Science; 1990. ISBN: 978044597298.
  • Oppermann W. Swelling behavior and elastic properties of ionic hydrogels. In: Polyelectrolyte Gels, Chapt. 10, ACS Symp. Ser. 1992;480:159–170.
  • Winsberg J, Stolze C, Schwenke A, et al. Aqueous 2,2,6,6-tetramethylpiperidine-N-oxylCatholytes for a high-capacity and high Current density Oxygen-Insensitive hybrid-flow battery. ACS Energy Lett. 2017;2(2):411–416. doi: 10.1021/acsenergylett.6b00655
  • Winsberg J, Janoschka T, Morgenstern S, et al. Poly(tempo)/zinc hybrid-flow battery: a novel, “green,” high voltage, and safe energy storage System. Adv Mater. 2016;28(11):2238–2243. doi: 10.1002/adma.201505000
  • Yu X, Yu WA, Manthiram MA. High-energy, single-ion-mediated nonaqueous zinc-TEMPO redox flow battery. ACS Appl Mater Interfaces. 2020;12(43):48654–48661. doi: 10.1021/acsami.0c14736
  • Hofmeister F. Zur Lehre von der Wirkung der Salze - Dritte Mittheilung. Arch für Exp Pathol und Pharmakologie. 1888;25(1):1–30. doi: 10.1007/BF01838161