336
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Experimental investigation of the mechanical properties of graphene oxide-silica nanoparticles reinforced rigid polyurethane foam

, , , &
Pages 235-244 | Received 02 Aug 2023, Accepted 07 Nov 2023, Published online: 18 Nov 2023

References

  • Rouzegar J, Niknejad A, Elahi SM, et al. Experimental investigation into the energy absorption of composite-metal tubes subjected to lateral load. Iran J Sci Technol Trans Mech Eng. 2020;44(3):585–598. doi: 10.1007/s40997-019-00295-y
  • Shen J, Lu G, Ruan D, et al. Lateral plastic collapse of sandwich tubes with metal foam core. Int J Mech Sci. 2015;91:99–109. doi: 10.1016/j.ijmecsci.2013.11.016
  • Firouzsalari SE, Dizhur D, Jayaraman K, et al. Flax fabric-reinforced epoxy pipes subjected to lateral compression[J]. Compos Struct. 2020;244:112307. doi: 10.1016/j.compstruct.2020.112307
  • Baroutaji A, Gilchrist MD, Olabi AG. Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading. Thin Walled Struct. 2016;98:337–350. doi: 10.1016/j.tws.2015.10.001
  • Niknejad A, Javan YT. Circular metal tubes during lateral compression between aV-shape indenter and aplaten–theory and experiment. Proc Inst Mech Eng Part L: J Mater Des Appl. 2015;229(4):318–331. doi: 10.1177/1464420713518744
  • Elahi SA, Rouzegar J, Niknejad A, et al. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin Walled Struct. 2017;114:1–10. doi: 10.1016/j.tws.2017.01.029
  • Rezvani MJ, Souzangarzadeh H. Effects of triggering and polyurethane foam on energy absorption of thin-walled circular tubes under the inversion process. J Energy Storage. 2020;27:101071. doi: 10.1016/j.est.2019.101071
  • Ren X, Zhang Y, Han CZ, et al. Mechanical properties of foam-filled auxetic circular tubes: Experimental and numerical study[J]. Thin Walled Struct. 2022;170:108584. doi: 10.1016/j.tws.2021.108584
  • Zhang J, Du J, Miao F, et al. Plastic behavior of slender circular metal foam-filled tubes under transverse loading[J]. Thin Walled Struct. 2022;171:108768. doi: 10.1016/j.tws.2021.108768
  • Nikje MMA, Tehrani ZM. Thermal and mechanical properties of polyurethane rigid foam/modified nanosilica composite. Polymer Engineering & Science. 2010;50(3):468–473. doi: 10.1002/pen.21559
  • Zhang Q, Lin X, Chen W. Modification of rigid polyurethane foams with the addition of nano-SiO2 or lignocellulosic biomass. Polymers. 2020;12(1):107. doi: 10.3390/polym12010107
  • Qing JQ, Liang SE, Cao F, et al. Morphology and properties of silica nanosphere/rigid polyurethane composites foams. China Plastics. 2016;30(7):23–29.
  • Lee DI, Ha YH, Jeon H, et al. Preparation and properties of polyurethane composite foams with silica-based fillers. Appl Sci. 2022;12(15):7418
  • Zhang JH, Wang X. Study on flame retardancy of polyurethane foam affected by graphene oxide. China Adhesives. 2020;29(4):53–56.
  • Xie Y. Preparation and performance study of functional graphene oxide/polyurethane foams[D]. Beijing, China: Beijing University of Chemical Technology; 2017.
  • Yan R. Amino-graphene oxide with polyurethane foam’s composite materials: synthesis and research[D]. Beijing, China: Beijing University of Chemical Technology; 2017.
  • Kim JM, Kim JH, Choe YR, et al. Effect of graphene oxide on mechanical characteristics of polyurethane foam. J Korean Soc Mar Engg. 2016;40(6):493–498. doi: 10.5916/jkosme.2016.40.6.493
  • Li Y, Tian H, Zhang J, et al. Fabrication and properties of rigid polyurethane nanocomposite foams with functional isocyanate modified graphene oxide. Polym Composites. 2020;41(12):5126–5134
  • Wang M, Ma L, Li B, et al. One-step generation of silica particles onto graphene oxide sheets for superior mechanical properties of epoxy composite and scale application. Compos Commun. 2020;22:100514. doi: 10.1016/j.coco.2020.100514
  • Dolatzadeh F, Moradian S, Jalili MM. Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO2/polyurethane nanocoatings. Corros Sci. 2011;53(12):4248–4257. doi: 10.1016/j.corsci.2011.08.036
  • Amirabadi‐Zadeh M, Khosravi H, Tohidlou E. Preparation of silica‐decorated graphene oxide nanohybrid system as a highly efficient reinforcement for woven jute fabric reinforced epoxy composites. J Appl Polym Sci. 2021;138(2):49653. doi: 10.1002/app.49653
  • Shitre PV, Harale RR, Sathe BR, et al. Silica nanosphere-graphene oxide (SiO2-GO) hybrid catalyzed facile synthesis of functionalized quinoxaline derivatives. Res Chem Intermed. 2017;43(2):829–841. doi: 10.1007/s11164-016-2667-8
  • Haeri SZ, Ramezanzadeh B, Asghari M. A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J Colloid Interface Sci. 2017;493:111–122. doi: 10.1016/j.jcis.2017.01.016
  • Zhang ML. Study on anticorrosion property of silica coated graphene oxide/epoxy composite coating[D]. Xian, China: Northwest University; 2018.
  • Liu RQ, Pan H, Wang SX, et al. Preparation and application of nano-SiO2/graphene oxide nanocomposites. Chem Res. 2018;29(1):90–98.
  • Wei BJ, Xiao T, Li XJ, et al. Preparation and properties of graphene and MWCNTs reinforced epoxy resin composites. Acta Materiae Compositae Sinica. 2012;29(5):53–60.
  • Bouibed A, Doufnoune R. Synthesis and characterization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings. J Adhes Sci Technol. 2019;33(8):834–860. doi: 10.1080/01694243.2019.1571660
  • Song B, Shi Y, Liu Q. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anticorrosion property of waterborne epoxy. Polym Adv Technol. 2020;31(2):309–318. doi: 10.1002/pat.4770
  • Charoenchai M, Tangbunsuk S, Keawwattana W. Silica-graphene oxide nanohybrids as reinforcing filler for natural rubber[J]. J Polym Res. 2020;27(8):1–16. doi: 10.1007/s10965-020-02209-y
  • Gu Y, Xia K, Wei Z, et al. Synthesis of nanoSiO2@graphene-oxide core-shell nanoparticles and its influence on mechanical properties of cementitious materials. Constr Build Mater. 2020;236:117619. doi: 10.1016/j.conbuildmat.2019.117619
  • Yu ZR, Li SN, Zang J, et al. Enhanced mechanical property and flame resistance of graphene oxide nanocomposite paper modified with functionalized silica nanoparticles. Composites. 2019;177:107347. doi: 10.1016/j.compositesb.2019.107347
  • Long Z, Chen Y, Yin W, et al. The effects of graphene oxide-silica nano-hybrid materials on the rheological properties, mechanical properties, and microstructure of cement-based materials. Materials. 2022;15(12):4207
  • Qiu J, Zhang K, Yan L. Mercaptopropyl-doped ultra-small silica modified GO nanosheets to enhance mechanical properties of nitrile butadiene rubber[J]. Polymer. 2022;243:124627. doi: 10.1016/j.polymer.2022.124627
  • Mowlaei R, Lin J, de Souza FB, et al. The effects of graphene oxide-silica nanohybrids on the workability, hydration, and mechanical properties of Portland cement paste. Constr Build Mater. 2021;266:121016. doi: 10.1016/j.conbuildmat.2020.121016
  • Xu XL, Wang XF, Li JL, et al. Preparation of hybrid graphene oxide/nano‐silica nanofillers and their application in poly (vinyl alcohol) composites. Polym Composites. 2017;38(S1):E89–E97. doi: 10.1002/pc.23808
  • Niknejad A, Assaee H, Elahi SA, et al. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes-an experimental study. Compos Struct. 2013;100:479–492. doi: 10.1016/j.compstruct.2013.01.009
  • Niknejad A, Elahi SA, Liaghat GH. Experimental investigation on the lateral compression in the foam-filled circular tubes. Materials & Design (1980-2015). 2012;36:24–34. doi: 10.1016/j.matdes.2011.10.047
  • Yan L, Chouw N, Jayaraman K. Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Composites. 2014;63:15–26. doi: 10.1016/j.compositesb.2014.03.013
  • Niknejad A, Rahmani DM. Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns. Materials&design. 2014;53:250–261. doi: 10.1016/j.matdes.2013.06.077
  • Zhang B, Wang L, Zhang J, et al. Deformation and energy absorption properties of cenosphere/aluminum syntactic foam-filled circular tubes under lateral quasi-static compression. Int J Mech Sci. 2021;192:106126. doi: 10.1016/j.ijmecsci.2020.106126