405
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Effect of methyl methacrylate concentrations on surface and thermal analysis of composite polymer polymethylmethacrylates with mesogen reactive RM82

ORCID Icon, , , &
Pages 1-11 | Received 14 Aug 2023, Accepted 26 Mar 2024, Published online: 04 Apr 2024

References

  • Hussein MA, Abdel-Rahman MA, Asiri AM, et al. Review on: liquid crystalline polyazomethines polymers. Basics, syntheses and characterization. Des Monomers Polym. 2012;15(5):431–463. doi: 10.1080/1385772X.2012.688325
  • Al Sheheri SZ, Al-Amshany ZM, Al Sulami QA, et al. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des Monomers Polym. 2019;22(1):8–53. doi: 10.1080/15685551.2019.1565664
  • Atabaki F, Shokrolahi A, Pahnavar Z. Methyl methacrylate based copolymers and terpolymers: preparation, identification, and plasticizing capability for a poly(methyl methacrylate) used in aviation. J Appl Polym Sci. 2018;135(34):1–13. doi: 10.1002/app.46603
  • Jafarpour M, Aghdam AS, Koşar A, et al. Electrospinning of ternary composite of PMMA-PEG-SiO2 nanoparticles: comprehensive process optimization and electrospun properties. Mater Today Commun. 2021 June;29:102865. doi: 10.1016/j.mtcomm.2021.102865
  • Li Y, Luo D. Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen. Opt Mater Express. 2016;6(2):691. doi: 10.1364/OME.6.000691
  • Chen F, Cong Y, Zhang B. Synthesis and characterization of liquid crystalline epoxy with cholesteric structure for modification of epoxy resin. Des Monomers Polym. 2016;19(6):560–568. doi: 10.1080/15685551.2016.1187441
  • Kloos J, Joosten N, Schenning A, et al. Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J Memb Sci. 2021;620(September 2020):118849. doi: 10.1016/j.memsci.2020.118849
  • Fan Z, Gong F, Nguyen ST, et al. Advanced multifunctional graphene aerogel - poly (methyl methacrylate) composites: experiments and modeling. Carbon N Y. 2015;81(1):396–404. doi: 10.1016/j.carbon.2014.09.072
  • Afrizal A, Budi S, Yusmaniar Y, et al. Photopolymerization of Monomer Methyl Methacrylate (PMMA) with Indium Tin Oxide (ITO) nanoparticle and modifications by polyethylene-block-polyethylene glycol (PE-B-PEG) using UV curing technology. Rasayan J Chem. 2022;15(3):1990–1996. doi: 10.31788/RJC.2022.1537014
  • Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym Rev. 2015;55(4):678–705. doi: 10.1080/15583724.2015.1031377
  • Ullah MW, Haraguchi N, Ali MA, et al. Synthesis of homo- and copolymer containing sulfonic acid via atom transfer radical polymerization. Des Monomers Polym. 2022;25(1):261–270. doi: 10.1080/15685551.2022.2126092
  • Minami H, Kagawa Y, Kuwahara S, et al. Dispersion atom transfer radical polymerization of methyl methacrylate with bromo-terminated poly(dimethylsiloxane) in supercritical carbon dioxide. Des Monomers Polym. 2004;7(6 SPEC. ISS.):553–562. doi: 10.1163/1568555042474103
  • Barim G, Yayla MG, Degirmenci M. Copolymerization of cyclohexene-3-yl methyl methacrylate with styrene: synthesis, characterization, monomer reactivity ratios, and thermal properties. Des Monomers Polym. 2014;17(7):610–616. doi: 10.1080/15685551.2014.907613
  • Arslan Z, Kiliclar HC, Yagci Y. Dimanganese decacarbonyl catalyzed visible light induced ambient temperature depolymerization of poly(methyl methacrylate. Des Monomers Polym. 2022;25(1):271–276. doi: 10.1080/15685551.2022.2135730
  • Wu J, Zhao Z, Hamel CM, et al. Evolution of material properties during free radical photopolymerization. J Mech Phys Solids. 2018;112:25–49. doi: 10.1016/j.jmps.2017.11.018
  • O’Donnell AD, Salimi S, Hart LR, et al. Applications of supramolecular polymer networks. React Funct Polym. 2022;172:105209. doi: 10.1016/j.reactfunctpolym.2022.105209
  • Kloos J, Jansen N, Houben M, et al. On the order and orientation in liquid crystalline polymer membranes for gas separation. Chem Mater. 2021;33(21):8323–8333. doi: 10.1021/acs.chemmater.1c02526
  • Qu M, Nilsson F, Schubert DW. Effect of filler orientation on the electrical conductivity of carbon fiber/PMMA composites. Fibers. 2018;6(1):1–10. doi: 10.3390/fib6010003
  • Lin X, Gablier A, Terentjev EM. Imine-based reactive mesogen and its corresponding exchangeable liquid crystal elastomer. Macromolecules. 2022;55(3):821–830. doi: 10.1021/acs.macromol.1c02432
  • Plamont R, Lancia F, Ryabchun A. Reactive mesogens for ultraviolet-transparent liquid crystal polymer networks. Liq Cryst. 2020;47(11):1569–1581. doi: 10.1080/02678292.2020.1749902
  • Di Mauro A, Farrugia C, Abela S, et al. Ag/ZnO/PMMA nanocomposites for efficient water reuse. ACS Appl Bio Mater. 2020;3(7):4417–4426. doi: 10.1021/acsabm.0c00409
  • Mahani AA, Motahari S, Nayyeri V. Electromagnetic and microwave absorption characteristics of PMMA composites filled with a nanoporous resorcinol formaldehyde based carbon aerogel. RSC Adv. 2018;8(20):10855–10864. doi: 10.1039/C8RA00196K
  • Al-Hamdan RS, Almutairi B, Kattan HF, et al. Influence of hydroxyapatite nanospheres in dentin adhesive on the dentin bond integrity and degree of conversion: a scanning electron microscopy (SEM), Raman, Fourier transform-infrared (FTIR), and microtensile study. Polymers. 2020;12(12):1–15. doi: 10.3390/polym12122948
  • Wang T, Sun Z, Liang F, et al. Poly(methylmethacrylate) microspheres with matting characteristic prepared by dispersion polymerization. Int J Polym Anal Charact. 2019;24(8):731–740. doi: 10.1080/1023666X.2019.1670393
  • Feng X, Kawabata K, Kaufman G, et al. Highly selective vertically aligned nanopores in sustainably derived polymer membranes by molecular templating. ACS Nano. 2017;11(4):3911–3921. doi: 10.1021/acsnano.7b00304
  • Marin San Roman P, Nijmeijer K, Sijbesma RP. Sulfonated polymerized liquid crystal nanoporous membranes for water purification. J Memb Sci. 2022;644(November 2021):120097. doi: 10.1016/j.memsci.2021.120097
  • Takagi H. Review of functional properties of natural fiber-reinforced polymer composites: thermal insulation, biodegradation and vibration damping properties. Adv Compos Mater. 2019;28(5):525–543. doi: 10.1080/09243046.2019.1617093
  • PerkinElmer. Differential scanning calorimetry beginner’s guide. 2013.
  • Ibrahim Y, Elkholy A, Schofield JS, et al. Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv Manuf Polym Compos Sci. 2020;6(1):17–28. doi: 10.1080/20550340.2019.1710023
  • Shyly PM, Ammakutti Sridevi N, Sumithraj Premkumar P. Thermal and mechanical studies of nanochitosan incorporated polymethyl methacrylate-based composite electrolytes. J Eng Appl Sci. 2022;69(1):1–14. doi: 10.1186/s44147-022-00077-5
  • Saxena P, Shukla P, Gaur MS. Thermal analysis of polymer blends and double layer by DSC. Polym Polym Compos. 2021;29(9):S11–S18. doi: 10.1177/0967391120984606
  • Chmela Š, Fiedlerová A, Liptaj T, et al. Synthesis and homopolymerization kinetics of 7-(methacroyloxy)-2-oxo-heptylphosphonic acid and its copolymerization with methyl methacrylate. Des Monomers Polym. 2019;22(1):79–90. doi: 10.1080/15685551.2019.1582216
  • Krishnasamy S, Thiagamani SMK, Muthu Kumar C, et al. Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites. Int J Biol Macromol. 2019;141:1–13. doi: 10.1016/j.ijbiomac.2019.08.231
  • Alsulami QA, Rajeh A. Structural, thermal, optical characterizations of polyaniline/polymethyl methacrylate composite doped by titanium dioxide nanoparticles as an application in optoelectronic devices. Opt Mater (Amst). 2022;123:111820. doi: 10.1016/j.optmat.2021.111820
  • Yang W, Rallini M, Wang DY, et al. Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Compos Part A Appl Sci Manuf. 2018;107:61–69. doi: 10.1016/j.compositesa.2017.12.030
  • Jaikumar V, Kumar D. New UV-Curable prepolymer: synthesis, characterization, and kinetics analysis. Int J Polym Anal Charact. 2015;20(6):481–490. doi: 10.1080/1023666X.2015.1050629
  • Yogeswari C, Sabari Girisun TC, Nagalakshmi R. Electrospun 2-nitroaniline (2NA) – poly (methylmethacrylate) (PMMA) nanofibers for power limiting and Q-switching applications. Chem Phys Lett. 2022;786(November):139209. doi: 10.1016/j.cplett.2021.139209
  • Hafeez A, Akhter Z, Gallagher JF, et al. Liquid phase synthesis of aromatic poly(azomethine)s, their physicochemical properties, and measurement of ex situ electrical conductivity of pelletized powdered samples. Des Monomers Polym. 2017;20(1):74–88. doi: 10.1080/15685551.2016.1231042
  • Neto JSS, de Queiroz HFM, Aguiar RAA, et al. A review on the thermal characterisation of natural and hybrid fiber composites. Polymers. 2021;13(24):4425. doi: 10.3390/polym13244425
  • Rahaman MH, Yaqoob U, Kim HC. The effects of conductive nano fillers alignment on the dielectric properties of copolymer matrix. Adv Manuf Polym Compos Sci. 2019;5(1):29–36. doi: 10.1080/20550340.2019.1567067