343
Views
4
CrossRef citations to date
0
Altmetric
Articles

Blockage of box-shaped and circular culverts under flood event conditions: a laboratory investigation

, ORCID Icon & ORCID Icon
Pages 607-616 | Received 05 Oct 2021, Accepted 06 Apr 2022, Published online: 08 May 2022

References

  • Adams, M. (2001). Specific gravity of coarse woody debris for some central Appalachian hardwood forest species. US Department of Agriculture, Forest Service, Northeastern Research Station.
  • Ahmed, K. O., Amini, A., Bahrami, J., Kavianpour, M. R., & Hawez, D. M. (2021). Numerical modeling of depth and location of scour at culvert outlets under unsteady flow conditions. Journal of Pipeline Systems Engineering and Practice, 12(4), 04021040. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000578
  • Balkham, M., Fosbeary, C., Kitchen, A., & Rickard, C. (2011). Culvert design and operation guide, bailey.persona-pi.com. Construction and Industry Research and Information Association.
  • Barthelmess, A. J., & Rigby, E. H. (2011). Estimating Culvert and Bridge Blockages-a Simplified Procedure, in: 34th World Congress of the International Association for Hydro-Environment Research and Engineering. IAHR, Brisbane, Australia.
  • Blanc, J., Wallerstein, N., Arthur, S., & Wright, G. B. (2014). Analysis of the performance of debris screens at culverts. Proceedings of the Institution of Civil Engineers - Water Management, 167(4), 219–229. https://doi.org/10.1680/wama.12.00063
  • Chang, F., & Shen, H. (1979). Debris problems in the river environment.
  • Chanson, H., Leng, X., & Wang, H. (2021). Challenging hydraulic structures of the twenty-first century – from bubbles,: transient turbulence to fish passage. Journal of Hydraulic Research, 59(1), 21–35. https://doi.org/10.1080/00221686.2020.1871429
  • De Cicco, P. N., Paris, E., Solari, L., & Ruiz-Villanueva, V. (2020). Bridge pier shape influence on wood accumulation: Outcomes from flume experiments and numerical modelling. Journal of Flood Risk Management, 13(2), e12599. https://doi.org/10.1111/jfr3.12599
  • Diakakis, M., Boufidis, N., Grau, J. M. S., Andreadakis, E., & Stamos, I. (2020). A systematic assessment of the effects of extreme flash floods on transportation infrastructure and circulation: The example of the 2017 Mandra flood. International Journal of Disaster Risk Reduction, 47, 1–17. https://doi.org/10.1016/j.ijdrr.2020.101542
  • Diehl, T. H. (1997). Potential drift accumulation at bridges. US Department of Transportation, Federal Highway Administration Research and Development.
  • Friedrich, H., Ravazzolo, D., Ruiz-Villanueva, V., Schalko, I., Spreitzer, G., Tunnicliffe, J., & Weitbrecht, V. (2022). Physical modelling of large wood (LW) processes relevant for river management: Perspectives from New Zealand and Switzerland. Earth Surface Processes and Landforms, 47(1), 32–57. https://doi.org/10.1002/ESP.5181
  • Furlan, P., Pfister, M., Matos, J., & Schleiss, A. J. (2018). Spillway blockage caused by large wood in reservoirs. In A. Paquier & N. Rivière (Eds), River flow 2018 - Ninth International Conference on fluvial hydraulics (Article number 02037). EDP Sciences. https://doi.org/10.1051/E3SCONF/20184002037.
  • Gomi, T., Sidle, R. C., Bryant, M. D., & Woodsmith, R. D. (2001). The characteristics of woody debris and sediment distribution in headwater streams,: southeastern Alaska. Canadian Journal of Forest Research, 31(8), 1386–1399. https://doi.org/10.1139/x01-070
  • Iqbal, U., Barthelemy, J., Li, W., & Perez, P. (2021a). Automating visual blockage classification of culverts with deep learning. Applied Sciences, 11(16), 7561. https://doi.org/10.3390/APP11167561
  • Iqbal, U., Barthelemy, J., Perez, P., Cooper, J., & Li, W. (2021b). A scaled physical model study of culvert blockage exploring complex relationships between influential factors. Australasian Journal of Water Resources, 1–14. https://doi.org/10.1080/13241583.2021.1996679
  • Justice, C. (2007). Response of juvenile salmonids to placement of large woody debris in California coastal streams. Humboldt State University.
  • Karimpour, S., & Gohari, S. (2020). An experimental study on the effects of debris accumulation at the culvert inlet on downstream scour. J. Rehabil. Civ. Eng, 8(2), 184–199. https://doi.org/10.22075/jrce.2020.18210.1348
  • Kramer, M., Peirson, W. L., French, R., & Smith, G. P. (2015). A physical model study of culvert blockage by large urban debris. Australasian Journal of Water Resources, 19(2), 127–133. https://doi.org/10.1080/13241583.2015.1116184
  • Li, Z., Harley, J., & Chanson, H. (2022). Physical modelling of pipe culverts to assist upstream fish passage. River Research and Applications, 38(2), 309–322. https://doi.org/10.1002/RRA.3905
  • Mohammadiun, S., Yazdi, J., Hager, J., Salehi Neyshabouri, S. A. A., Sadiq, R., Hewage, K., & Alavi Gharahbagh, A. (2020). Effects of bottleneck blockage on the resilience of an urban stormwater drainage system. Hydrological Sciences Journal, 65(2), 281–295. https://doi.org/10.1080/02626667.2019.1690657
  • Okamoto, T., Takebayashi, H., Sanjou, M., Suzuki, R., & Toda, K. (2020). Log jam formation at bridges and the effect on floodplain flow: A flume experiment. Journal of Flood Risk Management, 13(S1), 1–13. https://doi.org/10.1111/jfr3.12562
  • Osman, E. A., & Taha, Z. (2022). Impact of box section coverage on the hydraulic parameters of open channels. Water Practice and Technology, 17(1), 26–37. https://doi.org/10.2166/WPT.2021.103
  • Paik, J., & Park, S. D. (2011). Numerical simulation of flood and debris flows through drainage culvert. Ital. J. Eng. Geol. Environ, 11, 487–493. https://doi.org/10.4408/IJEGE.2011-03.B-054.
  • Rigby, E. H., Boyd, M. J., Roso, S., Silveri, P., & Davis, A. (2002). Causes and effects of culvert blockage during large storms. In E. W. Strecker & W. C. Huber (Eds), Global solutions for urban drainage (pp. 1–16). American Society of Civil Engineers, ASCE. https://doi.org/10.1061/40644(2002)298.
  • Rigby, E., & Silveri, P. (2001). The impact of blockages on flood behaviour in the Wollongong storm of August 1998, in: 6th Conference on Hydraulics in Civil Engineering: The State of Hydraulics. Institution of Engineers, Australia, p. 107.
  • Roso, S., Boyd, M., Rigby, E., & VanDrie, R. (2002). Prediction of increased flooding in urban catchments due to debris blockage and flow diversions, in: 5th International Conference on Sustainable Techniques and Strategies in Urban Water Management. GRAIE, Lyon, France, pp. 8–13.
  • Schmocker, L., & Hager, W. H. (2011). Probability of drift blockage at bridge decks. Journal of Hydraulic Engineering, 137(4), 470–479. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000319
  • Schmocker, L., & Hager, W. H. (2013). Scale modeling of wooden debris accumulation at a debris rack. Journal of Hydraulic Engineering, 139(8), 827–836. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000714
  • Sorourian, S., Keshavarzi, A., & Ball, J. E. (2016). Scour at partially blocked box-culverts under steady flow. Proceedings of the Institution of Civil Engineers - Water Management, 169(6), 247–259. https://doi.org/10.1680/jwama.15.00019
  • Sorourian, S., Keshavarzi, A., Ball, J., & Samali, B. (2014a). Blockage effects on scouring downstream of box culverts under unsteady flow. Australasian Journal of Water Resources, 18(2), 180–190. https://doi.org/10.1080/13241583.2014.11465449
  • Sorourian, S., Keshavarzi, A., Samali, B., & Ball, J. (2013). Study of blockage effect on scouring pattern downstream of a box culvert, in: From Materials to Structures: Advancement Through Innovation - Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, ACMSM 2012. Sydney, pp. 741–744. https://doi.org/10.1201/b15320-131.
  • Sorourian, S., Keshavarzi, A., Samali, B., & Ball, J. E. (2014b). Prediction of Scouring Depth at the Outlet of Partially Blocked Box Culvert in: World Environmental and Water Resources Congress. American Society of Civil Engineers (ASCE), Portland, USA, pp. 1352–1361. https://doi.org/10.1061/9780784413548.136.
  • Spreitzer, G., Tunnicliffe, J., & Friedrich, H. (2021). Effects of large wood (LW) blockage on bedload connectivity in the presence of a hydraulic structure. Ecological Engineering, 161, 106156. https://doi.org/10.1016/J.ECOLENG.2021.106156
  • Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., & Waldner, P. (2017). Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112–127. https://doi.org/10.1016/j.geomorph.2016.10.011
  • Streftaris, G., Wallerstein, N. P., Gibson, G., & Arthur, S. (2013). Modeling probability of blockage at culvert trash screens using Bayesian approach. Journal of Hydraulic Engineering, 139(7), 716–726. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000723
  • Taha, N., El-Feky, M. M., El-Saiad, A. A., & Fathy, I. (2020a). Numerical investigation of scour characteristics downstream of blocked culverts. Alexandria Engineering Journal, 59(5), 3503–3513. https://doi.org/10.1016/J.AEJ.2020.05.032
  • Taha, N., El-Feky, M. M., El-Saiad, A. A., Zelenakova, M., Vranay, F., & Fathy, I. (2020b). Study of scour characteristics downstream of partially-blocked circular culverts. Water, 12(10), 2845. https://doi.org/10.3390/W12102845
  • Weeks, W., Barthelmess, A., Rigby, E., Witheridge, G., & Adamson, R. (2009). Australian Rainfall and Runoff Revision Project 11: Blockage of hydraulic structures.
  • Xia, J., Teo, F. Y., Falconer, R. A., Chen, Q., & Deng, S. (2018). Hydrodynamic experiments on the impacts of vehicle blockages at bridges. Journal of Flood Risk Management, 11, S395–S402. https://doi.org/10.1111/jfr3.12228
  • Zhong, Z., Chen, N., Hu, G., Han, Z., & Ni, H. (2021). Aggravation of debris flow disaster by extreme climate and engineering: A case study of the Tongzilin Gully: Southwestern Sichuan Province, China. Natural Hazards, 109(1), 237–253. https://doi.org/10.1007/S11069-021-04834-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.