287
Views
1
CrossRef citations to date
0
Altmetric
Articles

Prediction of fluvial erosion rate in Jamuna River, Bangladesh

ORCID Icon &
Pages 625-637 | Received 17 Jul 2021, Accepted 13 Apr 2022, Published online: 21 May 2022

References

  • Aktar, M. N. (2013). Historical trend of riverbank erosion along the braided river Jamuna. International Journal of Science: Basic and Applied Research, 11(1), 173–180.
  • Alam, G. M. M., Alam, K., Mushtaq, S., Sarker, M. N. I., & Hossain, M. (2020). Hazards, food insecurity and human displacement in rural riverine Bangladesh: Implications for policy. International Journal of Disaster Risk Reduction, 43, 101364. https://doi.org/10.1016/j.ijdrr.2019.101364
  • Aldefae, A. H., Al-Khafaji, R. A., Shamkhi, M. S., & Kumar, H. Q. (2020). Erosion, sediments transport and riverbank stability: A review. IOP Conference Series: Materials Science and Engineering (pp. 012014). 19–20 February 2020
  • Arulanandan, K., Gillogley, E., & Tully, R. (1980). Development of a quantitative method to predict critical shear stress and rate of erosion of natural undisturbed cohesive soils. California Univ Davis Dept of Civil Engineering.
  • Ashraf, M., & Shakir, A. S. (2018). Prediction of river bank erosion and protection works in a reach of Chenab river, Pakistan. Arabian Journal of Geosciences, 11(7), 1–11. https://doi.org/10.1007/s12517-018-3493-7
  • Baki, A. B. M., & Gan, T. Y. (2012). Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-temporal landsat images. Quaternary International, 263, 148–161. https://doi.org/10.1016/j.quaint.2012.03.016
  • Best, J. L., Ashworth, P. J., Sarker, M. H., & Roden, J. E. (2007). The Brahmaputra-Jamuna river, Bangladesh. Large Rivers: Geomorphology and Management, 395–430. https://doi.org/10.1002/9780470723722.ch19
  • Bhuiyan, M. A. H., Rakib, M. A., Takashi, K., Julleh Jalalur Rahman, M., & Suzuki, S. (2010). Regulation of Brahmaputra-Jamuna river around Jamuna bridge site, Bangladesh: Geoenvironmental impacts. Journal of Water Resource and Protection, 2010. 123–130. http://doi.org/10.4236/jwarp.2010.22014
  • Chang, C.-H., Chen, H., Guo, W.-D., Yeh, S.-H., Chen, W.-B., Liu, C.-H., & Lee, S.-C. (2020). Predicting river embankment failure caused by toe scour considering 1D and 2D hydraulic models: A case study of Da-an river, Taiwan. Water, 12(4), 1026. https://doi.org/10.3390/w12041026
  • Clark, L., & Wynn, T. (2007). Methods for determining streambank critical shear stress and soil erodibility: Implications for erosion rate predictions. Transactions of the ASABE, 50(1), 95–106. https://doi.org/10.13031/2013.22415
  • Coleman, J. M. (1969). Brahmaputra River: channel processes and sedimentation. Sedimentary Geology, 3(2–3), 129–239. https://doi.org/10.1016/0037-0738(69)90010-4
  • Couper, P. R., & Maddock, I. P. (2001). Subaerial river bank erosion processes and their interaction with other bank erosion mechanisms on the river arrow, Warwickshire, UK. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 26(6), 631–646. https://doi.org/10.1002/esp.212
  • Daly, E., Fox, G., & Al-Madhhachi, A. (2013). Application of excess shear stress and mechanistic detachment rate models for the erodibility of cohesive soils. ASABE Paper (131596568).
  • Daly, E. R., Fox, G. A., Enlow, H. K., Storm, D. E., & Hunt, S. L. (2015). Site-scale variability of streambank fluvial erodibility parameters as measured with a jet erosion test. Hydrological Processes, 29(26), 5451–5464. https://doi.org/10.1002/hyp.10547
  • Darby, S. E., Trieu, H. Q., Carling, P. A., Sarkkula, J., Koponen, J., Kummu, M., Conlan, I., & Leyland, J. (2010). A physically based model to predict hydraulic erosion of fine-grained riverbanks: The role of form roughness in limiting erosion. Journal of Geophysical Research: Earth Surface, 115(F4). http://doi.org/10.1029/2010JF001708
  • Dunn, I. S. (1959). Tractive resistance of cohesive channels. Journal of the Soil Mechanics and Foundations Division, 85(3), 1–24. https://doi.org/10.1061/JSFEAQ.0000195
  • Duong, T. T. (2021). Characteristic of erosion properties and relationship with geotechnical properties for red riverbank soil in Hanoi, Vietnam.
  • Duong Thi, T., & Do Minh, D. (2019). Riverbank Stability Assessment under river water level changes and hydraulic erosion. Water, 11(12), 2598. https://doi.org/10.3390/w11122598
  • Enlow, H. K., Fox, G. A., & Guertault, L. (2017). Watershed variability in streambank erodibility and implications for erosion prediction. Water, 9(8), 605. https://doi.org/10.3390/w9080605
  • FRERMIP. (2018). Flood and riverbank erosion risk management investment program – Project 1. 44167-014.
  • Giri, S., Thompson, A., Donchyts, G., Oberhagemann, K., Mosselman, E., & Alam, J. (2021). Stabilization of the lower Jamuna river in Bangladesh—hydraulic and morphological assessment. Geosciences, 11(9), 389. https://doi.org/10.3390/geosciences11090389
  • Goswami, D. C. (1998). Fluvial regime and flood hydrology of the Brahmaputra River, Assam. Memoirs-Geological Society of India, 53–76.
  • Hanson, G. (1990a). Surface erodibility of earthen channels at high stresses part I – open channel testing. Transactions of the ASAE, 33(1), 127–0131. https://doi.org/10.13031/2013.31305
  • Hanson, G. (1990b). Surface erodibility of earthen channels at high stresses part II – developing an in situ testing device. Transactions of the ASAE, 33(1), 132–0137. https://doi.org/10.13031/2013.31306
  • Hanson, G., & Cook, K. (2004). Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Applied Engineering in Agriculture, 20(4), 455. https://doi.org/10.13031/2013.16492
  • Hanson, G., Cook, K., & Simon, A. (2002). Non-vertical jet testing of cohesive streambank materials. ASABE Paper, 22119.
  • Hanson, G., & Simon, A. (2001). Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes, 15(1), 23–38. https://doi.org/10.1002/hyp.149
  • Haque, R., Parr, N., & Muhidin, S. (2020). Climate-related displacement, impoverishment and healthcare accessibility in mainland Bangladesh. Asian Population Studies, 16(2), 220–239. https://doi.org/10.1080/17441730.2020.1764187
  • Islam, M. N., Biswas, R. N., Shanta, S. R., Islam, R., & Jakariya, M. (2019). Morphological dynamics of the Jamuna River in Kazipur subdistrict. Earth Systems and Environment, 3(1), 73–81. https://doi.org/10.1007/s41748-018-0078-2
  • Julian, J. P., & Torres, R. (2006). Hydraulic erosion of cohesive riverbanks. Geomorphology, 76(1–2), 193–206. https://doi.org/10.1016/j.geomorph.2005.11.003
  • Karmaker, T., & Das, R. (2017). Estimation of riverbank soil erodibility parameters using genetic algorithm. Sādhanā, 42(11), 1953–1963. https://doi.org/10.1007/s12046-017-0733-6
  • Karmaker, T., & Dutta, S. (2011). Erodibility of fine soil from the composite river bank of Brahmaputra in India. Hydrological Processes, 25(1), 104–111. https://doi.org/10.1002/hyp.7826
  • Karmaker, T., & Dutta, S. (2013). Modeling seepage erosion and bank retreat in a composite river bank. Journal of Hydrology, 476, 178–187. https://doi.org/10.1016/j.jhydrol.2012.10.032
  • Khan, N. I., & Islam, A. (2003). Quantification of erosion patterns in the Brahmaputra–Jamuna River using geographical information system and remote sensing techniques. Hydrological Processes, 17(5), 959–966. https://doi.org/10.1002/hyp.1173
  • Kimiaghalam, N., Goharrokhi, M., Clark, S. P., & Ahmari, H. (2015). A comprehensive fluvial geomorphology study of riverbank erosion on the Red River in Winnipeg, Manitoba, Canada. Journal of Hydrology, 529, 1488–1498. https://doi.org/10.1016/j.jhydrol.2015.08.033
  • Lai, Y. G. (2008, November). SRH-2D version 2: Theory and User’s Manual. Sedimentation and River Hydraulics–Two-Dimensional River Flow Modeling, US Department of Interior, Bureau of Reclamation.
  • Lai, Y. G., & Wu, K. (2013). Modeling of vertical and lateral erosion on the Chosui River, Taiwan. In Struck, Scott D., Murray, Daniel J., Jr., Patterson, Craig L. eds. World environmental and Water Resources congress 2013: Showcasing the future (pp. 1747–1756). American Society of Civil Engineers.
  • Lawler, D. (1995). The impact of scale on the processes of channel-side sediment supply: A conceptual model. IAHS Publications-Series of Proceedings and Reports – International Association of Hydrological Sciences, 226, 175–186.
  • Lawler, D. M., Grove, J. R., Couperthwaite, J. S., & Leeks, G. J. L. (1999). Downstream change in river bank erosion rates in the Swale–Ouse system, Northern England. Hydrological Processes, 13(7), 977–992. https://doi.org/10.1002/(SICI)1099-1085(199905)13:7<977::AID-HYP785>3.0.CO;2-5
  • Mahalder, B., Schwartz, J., Palomino, A., & Zirkle, J. (2018). Estimating erodibility parameters for streambanks with cohesive soils using the mini jet test device: A comparison of field and computational methods. Water, 10(3), 304. https://doi.org/10.3390/w10030304
  • Osman, A. M., & Thorne, C. R. (1988). Riverbank stability analysis. I: Theory. Journal of Hydraulic Engineering, 114(2), 134–150. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:2(134)
  • Partheniades, E. (1965). Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, 91(1), 105–139. https://doi.org/10.1061/JYCEAJ.0001165
  • Rinaldi, M., & Darby, S. E. (2007). Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations. Developments in Earth Surface Processes, 11, 213–239. https://doi.org/10.1016/S0928-2025(07)11126-3
  • Rinaldi, M., Mengoni, B., Luppi, L., Darby, S. E., & Mosselman, E. (2008). Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resources Research, 44(9). https://doi.org/10.1029/2008WR007008
  • Rinaldi, M., & Nardi, L. (2013). Modeling interactions between riverbank hydrology and mass failures. Journal of Hydrologic Engineering, 18(10), 1231–1240. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000716
  • Sarker, M. H., Huque, I., Alam, M., & Koudstaal, R. (2003). Rivers, chars and char dwellers of Bangladesh. International Journal of River Basin Management, 1(1), 61–80. https://doi.org/10.1080/15715124.2003.9635193
  • Semmad, S., & Chalermyanont, T. (2018). Riverbank retreat analysis of the U-tapao river, southern Thailand. Arabian Journal of Geosciences, 11(12), 1–13. https://doi.org/10.1007/s12517-018-3629-9
  • Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement.
  • Sidorchuk, A. (2005). Stochastic modelling of erosion and deposition in cohesive soils. Hydrological Processes: An International Journal, 19(7), 1399–1417. https://doi.org/10.1002/hyp.5568
  • Simon, A., Thomas, R., & Klimetz, L. (2010). Comparison and experiences with field techniques to measure critical shear stress and erodibility of cohesive deposits. In 2nd joint federal interagency conference, June 27 – July 1, 2010.
  • Smerdon, E. T., & Beasley, R. P. (1961). Critical tractive forces in cohesive soils. Agricultural Engineering, 42(1), 26–29.
  • Swamee, P., & Mittal, M. (1976). An explicit equation for critical shear stress in alluvial streams. Water and Energy International, 33(2), 237–239.
  • Thoman, R. W., & Niezgoda, S. L. (2008). Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: Case study in the powder river basin of Wyoming. Journal of Hydraulic Engineering, 134(12), 1677–1687. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1677)
  • Toan, D. T. (2020). Assessment riverbank Stability of the Red Riverbank: Case study in the riverbank from km 20 to km 27, Ba Vi, Hanoi. In P. Duc Long, N. Dung, eds. Geotechnics for sustainable infrastructure development (pp. 929–936). Springer. https://doi.org/10.1007/978-981-15-2184-3_121
  • Van De Wiel, M. J. (2003). Numerical modelling of channel adjustment in alluvial meandering rivers with riparian vegetation. University of Southampton.
  • Vanoni, V. (1977). Sedimentation engineering. American Society of Civil Engineering. ASCE Manuals and Rep. on Eng. Pract., 5, 745 pp.
  • Wang, Q., Zhou, P., Fan, J., & Qiu, S. (2021). Study on parameters of two widely used cohesive soils erosion models. Water, 13(24), 3621. https://doi.org/10.3390/w13243621
  • Wynn, T. M., Mostaghimi, S., & Alphin, E. F. (2004, August 1–4). The effects of vegetation on stream bank erosion. ASAE Annual Meeting, Ottawa, Canada (p. 1).
  • Yagisawa, J., van Damme, M., Pol, J. C., & Bricker, J. (2019). Verification of a predictive formula for critical shear stress with large scale levee erosion experiment. In Proc., 11th ICOLD European Club Symp. Greek Committee on Large Dams.
  • Zong, Q., Xia, J., Zhou, M., Deng, S., & Zhang, Y. (2017). Modelling of the retreat process of composite riverbank in the Jingjiang reach using the improved BSTEM. Hydrological Processes, 31(26), 4669–4681. https://doi.org/10.1002/hyp.11387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.