235
Views
7
CrossRef citations to date
0
Altmetric
Articles

Impact of data partitioning in groundwater level prediction using artificial neural network for multiple wells

ORCID Icon, , , ORCID Icon &
Pages 639-650 | Received 11 Jan 2021, Accepted 08 May 2022, Published online: 13 Jun 2022

References

  • Adoko, A. C., Zuo, Q.-J., & Wu, L. (2011). A fuzzy model for high-speed railway tunnel Convergence prediction in weak rock. Electronic Journal of Geotechnical Engineering, 16, 1275–1295.
  • Arthur, C. K., Temeng, V. A., & Ziggah, Y. Y. (2019). Soft computing-based technique as a predictive tool to estimate blast induced ground vibration. Journal of Sustainable Mining, 18, 287–296. https://doi.org/10.1016/j.jsm.2019.10.001
  • Banerjee, P., Prasad, R. K., & Singh, V. S. (2009). Forecasting of groundwater level in hard rock region using artificial neural network. Environ Geology, 58(6), 1239–1246. https://doi.org/10.1007/s00254-008-1619-z
  • Bowden, G. J., Maier, H. R., & Dandy, G. C. (2002). Optimal division of data for neural network models in water resources applications. Water Resources Research, 38(2), 1–11.https://doi.org/10.1029/2001WR000266
  • Cakir, L., & Konakoglu, B. (2019). The impact of data normalization on 2D coordinate transformation using GRNN. Geodetski Vestnik, 63(4), 541–553. https://doi.org/10.15292/geodetski-vestnik.2019.04.541-553
  • Chang, F. J., Chang, L. C., Huang, C. W., & Kao, I. F. (2016). Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. Journal of Hydrology, 541, 965–976. https://doi.org/10.1016/j.jhydrol.2016.08.006
  • Chang, J., Wang, G., & Mao, T. (2015). Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology, 529, 1211–1220. https://doi.org/10.1016/j.jhydrol.2015.09.038
  • Chiroma, H., Khan, A., Abubakar, A. I., Saadi, Y., Hamzad, M. F., Shuib, L., Gitalf, A. Y., & Herawana, T. (2016). A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Applied Soft Computing, 48, 50–58. https://doi.org/10.1016/j.asoc.2016.06.038
  • Dorn, M., Braga, A. L. S., Llanos, C. H., & Coelho, L. S. (2012). A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides. Expert Systems with Applications, 39(15), 12268–12279. https://doi.org/10.1016/j.eswa.2012.04.046
  • Fu, Q., Liu, D., Li, T., Cui, S., & Hu, Y. (2016). EMD-RBFNN coupling prediction model of complex regional groundwater depth series: A case study of the Jiansanjiang Administration of Heilongjiang land reclamation in China. Water, 8(8), 340. https://doi.org/10.3390/w8080340
  • Ghasemi, E., Gholizadeh, H., & Adoko, A. C. (2019). Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach. Engineering with Computers, https://doi.org/10.1007/s00366-018-00695-9
  • Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, Man, and Cybernetics SMC, 1(4), 364–378. https://doi.org/10.1109/TSMC.1971.4308320
  • Kalantary, F., Ardalan, H., & Nariman-Zadeh, N. (2009). An investigation on the Su–NSPT correlation using GMDH type neural networks and genetic algorithms. Engineering Geology, 104(1–2), 144–155. https://doi.org/10.1016/j.enggeo.2008.09.006
  • Khadri, S. F. R., & Pande, C. (2016). Ground water flow modeling for calibrating steady state using MODFLOW software: A case study of Mahesh River basin, India. Modeling Earth Systems and Environment, 2, 1–17. https://doi.org/10.1007/s40808-015-0049-7
  • Lee, S., Lee, K., & Yoon, H. (2018). Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors. Hydrogeology Journal, 27(2), 567–579. https://doi.org/10.1007/s10040-018-1866-3
  • May, R. J., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks, 23(2), 283–294. https://doi.org/10.1016/j.neunet.2009.11.009
  • Mohanty, S., Jha, M. K., Raul, S. K., Panda, R. K., & Sudheer, K. P. (2015). Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resources Management, 29(15), 5521–5532. https://doi.org/10.1007/s11269-015-1132-6
  • Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Behnia, N. (2013). A Wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resources Management, 27(5), 1301–1321. https://doi.org/10.1007/s11269-012-0239-2
  • Mustafa, M. R., Rezaur, R. B., Rahardjo, H., & Isa, M. H. (2012). Prediction of pore-water pressure using radial basis function neural network. Engineering Geology, 135–136, 40–47. https://doi.org/10.1016/j.enggeo.2012.02.008
  • Nagasaka, K., Kita, Y., & Hashimoto, F. (1980). Identification of a model of grinding wheel life by the group method of data handling. Wear, 58(1), 147–154. https://doi.org/10.1016/0043-1648(80)90219-7
  • Nariman-Zadeh, N., Darvizeh, A., Jamali, A., & Moeini, A. (2005). Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. Journal of Materials Processing Technology, 164–165, 1561–1571. https://doi.org/10.1016/j.jmatprotec.2005.02.020
  • Nayak, P. C., Satyajirao, Y. R., & Sudheer, K. P. (2006). Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20(1), 77–90. https://doi.org/10.1007/s11269-006-4007-z
  • Palani, S., Liong, S., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586–1597. https://doi.org/10.1016/j.marpolbul.2008.05.021
  • Pierini, J. O., Gómez, E. A., & Telesca, L. (2012). Prediction of water flows in Colorado River, Argentina. Latin American Journal of Aquatic Research, 40(4), 872–880.
  • Rahnama, M. B., & Zamzam, A. (2013). Quantitative and qualitative simulation of groundwater by mathematical models in Rafsanjan aquifer using MODFLOW and MT3DMS. Arabian Journal of Geosciences, 6(3), 901–912. https://doi.org/10.1007/s12517-011-0364-x
  • Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modelling. Journal of Hydrology, 572, 336–351. https://doi.org/10.1016/j.jhydrol.2018.12.037
  • Rakhshandehroo, G. R., Vaghefi, M., & Aghbolaghi, M. A. (2011). Forecasting groundwater level in Shiraz Plain using artificial neural networks. Arabian Journal for Science and Engineering, 37(7), 1871–1883. https://doi.org/10.1007/s13369-012-0291-5
  • Shahin, M. A., Maier, H. R., & Jaksa, M. B. (2004). Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering, 18(2), 105–144. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
  • Solomatine, D. P., Abrahart, R., & See, L. (2008). Data-driven modelling: Concept, approaches, and experiences. In R. J. Abrahart, L. M. See, & D. P. Solomatine (Eds.), Practical hydroinformatics: Computational intelligence and technological developments in water applications. Springer-Verlag. https://doi.org/10.1007/978-3-540-79881-1_2
  • Specht, D. F. (1991). A general regression neural network. IEEE Trans, Neural Network, 2(6), 568–576. https://doi.org/10.1109/72.97934
  • Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall–runoff models. Applied Soft Computing, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02.002
  • Surinaidu, L., Gurunadha Rao, V. V. S., Srinivasa Rao, N., & Srinu, S. (2014). Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resources and Industry, 7–8, 49–65. https://doi.org/10.1016/j.wri.2014.10.002
  • Taormina, R., Chau, K., & Sethi, R. (2012). Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence, 25(8), 1670–1676. https://doi.org/10.1016/j.engappai.2012.02.009
  • Twarakavi, N. K. C., Šimůnek, J., & Seo, S. (2008). Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone Journal, 7(2), 757–768. https://doi.org/10.2136/vzj2007.0082
  • Vissikirsky, V. A., & Stepashko, V. S. (2005). Growth dynamics of trees irrigated with wastewater: GMDH modeling, assessment, and control issues. Instrumentation Science and Technology, 2(2), 229–249. https://doi.org/10.1081/CI-200048085
  • Wang, W., Van Gelder, P. H. A. J. M., Vrijling, J. K., & Ma, J. (2005). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1–4), 383–399. https://doi.org/10.1016/j.jhydrol.2005.09.032
  • Wang, X., Liu, T., Zheng, X., Peng, H., Xin, J., & Zhang, B. (2018). Short–term prediction of groundwater level using improved random forest regression with a combination of random features. Applied Water Science, 8(5), 125. https://doi.org/10.1007/s13201-018-0742-6
  • Wu, W., May, R., Dandy, G. C., & Maier, H. R. (2012). A method for comparing data splitting approaches for developing hydrological ANN models (pp. 8). Proceedings of the International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet. pp.
  • Xi, H., Feng, Q., Liu, W., Si, J., Chang, Z., & Su, Y. (2010). The research of groundwater flow model in Ejina Basin. Northwestern China. Environ Earth Sciences, 60(5), 953–963. https://doi.org/10.1007/s12665-009-0231-1
  • Yoon, H., Jun, S., Hyun, Y., Bae, G., & Lee, K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396(1–2), 128–138. https://doi.org/10.1016/j.jhydrol.2010.11.002
  • Youssef, T., Gad, M. I., & Ali, M. M. (2012). Assessment of groundwater resources management in Wadi El-Farigh Area using MODFLOW. IOSR Journal of Engineering, 2(10), 69–78. https://doi.org/10.9790/3021-021016978
  • Ziggah, Y. Y., Youjian, H., Tierra, A., Konaté, A. A., & Hui, Z. (2016). Performance evaluation of artificial neural networks for planimetric coordinate transformation-a case study. Ghana. Arabian Journal of Geosciences, 9(17), 1–16. https://doi.org/10.1007/s12517-016-2729-7
  • Ziggah, Y. Y., Youjian, H., Tierra, A. R., & Laari, P. B. (2019). Coordinate transformation between global and local data based on artificial neural network with k-fold cross-validation in Ghana. Earth Science Research Journal, 23(1), 67–77. https://doi.org/10.15446/esrj.v23n1.63860

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.