218
Views
1
CrossRef citations to date
0
Altmetric
Articles

Application of the US-EPA’s HAWQS model to predict future climate impacts on hydrological processes

ORCID Icon, ORCID Icon, , &
Pages 711-722 | Received 20 Aug 2021, Accepted 01 May 2022, Published online: 13 Jul 2022

References

  • Albek, M., Albek, E. A., Göncü, S., & Uygun, B. S. (2019). Ensemble streamflow projections for a small watershed with HSPF model. Environmental Science and Pollution Research, 26(35), 36023–36036. https://doi.org/10.1007/s11356-019-06749-9
  • Berkowitz, J. F., Johnson, D. R., & Price, J. J. (2020). Forested wetland hydrology in a large Mississippi River tributary system. Wetlands, 40(5), 1133–1148. https://doi.org/10.1007/s13157-019-01249-5
  • Clark, B. R., & Hart, R. M. (2009). The Mississippi Embayment regional Aquifer Study (MERAS) – Documentation of a groundwater flow model constructed to assess water availability in the Mississippi embayment (U.S. Geological Survey Scientific Investigations Report, 2009–5172) (p. 61).
  • Ertürk, A., Ekdal, A., Gürel, M., Karakaya, N., Guzel, C., & Gönenç, E. (2014). Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of The Total Environment, 499, 437–447. https://doi.org/10.1016/j.scitotenv.2014.07.001
  • Fant, C., Srinivasan, R., Boehlert, B., Rennels, L., Chapra, S. C., Strzepek, K. M., Corona, J., Allen, A., & Martinich, J. (2017) Climate change impacts on US water quality using two models: HAWQS and US basins. Water, 9(2), 118. https://doi.org/10.3390/w9020118
  • Guedon, N. B., & Thomas, J. V. (2004). State of Mississippi water quality assessment 2004 section 305(b) report appendum (p. 62). Mississippi Department of Environmental Quality.
  • Hovenga, P. A., Wang, D., Medeiros, S. C., Hagen, S. C., & Alizad, K. (2016). The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change. Earth’s Future, 4(5), 124–142. https://doi.org/10.1002/2015EF000348
  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. In C. B. Field, V. Barros, T. F. Stocker, & D. Qin (Eds.), Special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press.
  • Kebede, H., Fisher, D. K., Sui, R. X., & Reddy, K. N. (2014). Irrigation methods and scheduling in the Delta region of Mississippi: Current status and strategies to improve irrigation efficiency. American Journal of Plant Sciences, 5(20), 2917–2928. https://doi.org/10.4236/ajps.2014.520307
  • Little, W. C., Thorne, C. R., & Murphey, J. B. (1982). Mass bank failure analysis of selected Yazoo basin streams. Transactions of the ASAE, 25(5), 1321–1328. https://doi.org/10.13031/2013.33721
  • Lu, C., Zhang, J., Tian, H., Crumpton, W. G., Helmers, M. J., Cai, W.-J., Hopkinson, C. S., & Lohrenz, S. E. (2020). Increased extreme precipitation challenges nitrogen load management to the Gulf of Mexico. Communications Earth & Environment, 1, 21. https://doi.org/10.1038/s43247-020-00020-7
  • Mississippi Department of Environmental Quality (MDEQ). (2008). State of Mississippi water quality criteria for intrastate, interstate, and coastal waters. Mississippi Department of Environmental Quality, Office of Pollution Control. https://doi.org/10.1016/j.envres.2020.109330
  • MSU Extension Service. (2014). Mississippi agricultural statistics service. http://www.dafvm.msstate.edu/factbook.pdf
  • Najjar, R., Patterson, L., & Graham, S. (2009). Climate simulations of major estuarine watersheds in the Mid-Atlantic region of the US. Climatic Change, 95(1-2), 139–168. https://doi.org/10.1007/s10584-008-9521-y.
  • Ouyang, Y. (2021). New insights on evapotranspiration and water yield in crop and forest lands under changing climate. Journal of Hydrology, 603, 127192. https://doi.org/10.1016/j.jhydrol.2021.127192
  • Ouyang, Y. (2022). A hybrid of copula prediction and time series computation to estimate stream discharge based on precipitation data. The Journal of the American Water Resources Association, 1–14. https://doi.org/10.1111/1752-1688.13003
  • Ouyang, Y., Grace, J. M., Parajuli, P. B., & Caldwell, P. V. (2022). Impacts of multiple hurricanes and tropical storms on watershed hydrological processes in the Florida panhandle. Climate, 10(3), 42. https://doi.org/10.3390/cli10030042
  • Ouyang, Y., Leininger, T. D., & Moran, M. (2013). Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi. Ecological Engineering, 61, 394–406. https://doi.org/10.1016/j.ecoleng.2013.09.057
  • Ouyang, Y., Leininger, T. D., & Moran, M. (2015). Estimating effects of reforestation on nitrogen and phosphorus load reductions in the Lower Yazoo River Watershed, Mississippi. Ecological Engineering, 75, 449–456. https://doi.org/10.1016/j.ecoleng.2014.11.032
  • Ouyang, Y., Parajuli, P. B., Feng, G., Leininger, T. D., Wan, Y. S., & Dash, P. (2018). Application of climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds. Journal of Hydrology, 563, 363–371. https://doi.org/10.1016/j.jhydrol.2018.06.017
  • Ouyang, Y., Paz, J., Feng, G., Read, J., Adeli, A., & Jenkins, J. (2017). A model to estimate hydrological processes and water budget from an irrigation farm pond in Mississippi. Water Resources Management, 31(7), 2225–2241. https://doi.org/10.1007/s11269-017-1639-0
  • Ouyang, Y., Wei, J., Grace, J. M., Obalum, S. E., Zipperer, W. C., & Huang, X. (2019). Estimating impact of forest land on groundwater recharge in a humid subtropical watershed of the Lower Mississippi River Alluvial valley. Journal of Hydrology: Regional Studies, 26, 100631. https://doi.org/10.1016/j.ejrh.2019.100631
  • Ouyang, Y., Zhang, J., Feng, G., Wan, Y., & Leininger, T. D. (2020). A century of precipitation trends in forest lands of the lower Mississippi River Alluvial Valley. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-019-56847-4
  • Parajuli, P. (2010). Assessing sensitivity of hydrologic responses to climate change from forested watershed in Mississippi. Hydrological Processes, 24(26), 3785–3797. https://doi.org/10.1002/hyp.7793
  • Reed, T., Mason, L. R., & Ekeng, C. C. (2020). Adapting to climate change in the upper Mississippi River basin: Exploring stakeholder perspectives on river system management and flood risk reduction. Environmental Health Insights, 14, 1–10. https://doi.org/10.1177/1178630220984153
  • Saucier, R. L. (1994). Geomorphology and quaternary geologic history of the lower Mississippi Valley (Vol. I (report), Vol. II (map folio)). U.S. Army Engineer Waterways Experiment Station.
  • Sinha, E., Michalak, A. M., & Balaji, V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357(6349), 405–408. https://doi.org/10.1126/science.aan2409.
  • Southern Regional Climate Center. (1998). Electronic climate atlas. National Oceanic and Atmospheric Administration.
  • Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., & Bierkens, M. F. P. (2012). Global patterns of change in discharge regimes for 2100. Hydrology and Earth System Sciences, 16, 1047–1062.
  • Yen, H., Daggupati, P., White, M. J., Srinivasan, R., Gossel, A., Wells, D., & Arnold, J. G. (2016). Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and Water Quality System (HAWQS). Water, 8(4), 164. https://doi.org/10.3390/w8040164
  • YMD (Yazoo Mississippi Delta Joint Water Management District). (2015). Groundwater monitoring, a primary YMD activity for 25 years. E-Newsletters, May 12, 2015. http://myemail.constantcontact.com/YMD-Joint-Water-Management-District-May-21--2015.html?soid=1120967545567&aid=AuOD6KeG9Sc
  • Zhang, T., & Jin, S. (2016). Evapotranspiration variations in the Mississippi River Basin estimated from GPS observations. IEEE Transactions Geoscience Remote Sensing, 54, 8.
  • Zhang, X., Srinivasan, R., & Hao, F. (2007). Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Transactions of the ASABE, 50(3), 901–910. https://doi.org/10.13031/2013.23154

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.