2,444
Views
3
CrossRef citations to date
0
Altmetric
Articles

Assessing the role of location and scale of Nature Based Solutions for the enhancement of low flows

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 743-758 | Received 13 Jan 2022, Accepted 17 Jun 2022, Published online: 13 Jul 2022

References

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986). An introduction to the European hydrological system – Systeme hydrologique Europeen, ‘SHE’, 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87(1–2), 45–59. https://doi.org/10.1016/0022-1694(86)90114-9
  • Al-Khudhairy, D. H. A., Thompson, J. R., Gavin, H., & Hamm, N. A. S. (1999). Hydrological modelling of a drained grazing marsh under agricultural land use and the simulation of restoration management scenarios. Hydrological Sciences Journal, 44(6), 943–971. https://doi.org/10.1080/02626669909492291
  • Ala-aho, P., Soulsby, C., Wang, H., & Tetzlaff, D. (2017). Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation. Journal of Hydrology, 547, 664–677. https://doi.org/10.1016/j.jhydrol.2017.02.023
  • Archer, N. A. L., Otten, W., Schmidt, S., Bengough, A. G., Shah, N., & Bonell, M. (2016). Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest and grassland in a temperate northern climate. Ecohydrology, 9(4), 585–600. https://doi.org/10.1002/eco.1658
  • Baldan, D., et al. (2021). Assessing multi-scale effects of natural water retention measures on in-stream fine bed material deposits with a modeling cascade. Journal of Hydrology, 594 (October 2020), 125702. https://doi.org/10.1016/j.jhydrol.2020.125702
  • Beven, K. J. (2018). On hypothesis testing in hydrology: Why falsification of models is still a really good idea. WIRES Water, 5(3), 1–8. https://doi.org/10.1002/wat2.1278
  • Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298. https://doi.org/10.1002/hyp.3360060305
  • Beven, K., & Westerberg, I. (2011). On red herrings and real herrings: Disinformation and information in hydrological inference. Hydrological Processes, 25(10), 1676–1680. https://doi.org/10.1002/hyp.7963
  • BGS. (2020). 1:50 000 Bedrock and Superficial Geology Map [online]. Geological Survey of Scotland, 1:50,000 geological map series. Retrieved 1 Feb 2019 from https://www.bgs.ac.uk/products/digitalmaps/
  • Birkel, C., Soulsby, C., & Tetzlaff, D. (2014). Integrating parsimonious models of hydrological connectivity and soil biogeochemistry to simulate stream DOC dynamics. Journal of Geophysical Research: Biogeosciences, 119(5), 1030–1047. https://doi.org/10.1002/2013JG002551
  • Blöschl, G. (2017). Debates-Hypothesis testing in hydrology: Introduction. Water Resources Research, 53(3), 1767–1769. https://doi.org/10.1002/2017WR020584
  • Blöschl, G., Ardoin-Bardin, S., Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., Matamoros, D., Merz, B., Shand, P., & Szolgay, J. (2007). At what scales do climate variability and land cover change impact on flooding and low flows? Hydrological Processes, 21(9), 1241–1247. https://doi.org/10.1002/hyp.6669
  • Blumstock, M., Tetzlaff, D., Malcolm, I. A., Nuetzmann, G., & Soulsby, C. (2015). Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows. Journal of Hydrology, 527, 1021–1033. https://doi.org/10.1016/j.jhydrol.2015.05.019
  • Booij, M. J., & Krol, M. S. (2010). Balance between calibration objectives in a conceptual hydrological model. Hydrological Sciences Journal, 55(6), 1017–1032. https://doi.org/10.1080/02626667.2010.505892
  • Boorman, D. B., Hollis, J. M., & Lilly, A. (1995). Hydrology of soil types: A hydrologically-based classification of the soils of the United Kingdom. IOH Report 126.
  • Brunner, M. I., Björnsen Gurung, A., Zappa, M., Zekollari, H., Farinotti, D., & Stähli, M. (2019). Present and future water scarcity in Switzerland: Potential for alleviation through reservoirs and lakes. Science of The Total Environment, 666, 1033–1047. https://doi.org/10.1016/j.scitotenv.2019.02.169
  • Burgess-Gamble, L., Ngai, R., Wilkinson, M., Nisbet, T., Pontee, N., Harvey, R., Kipling, K., Addy, S., Rose, S., Maslen, S., Jay, H., Nicholson, A., Page, T., Jonczyk, J., & Quin, P. (2017). Working with Natural Processes – Evidence Directory. SC150005. Bristol.
  • Butts, M., & Graham, D. (2005). Flexible integrated watershed modeling with MIKE SHE. In: V. P. Singh & D. K. Frevert, eds. Watershed models (pp. 245–271). CRC Press.
  • Byrne, K. A., Kiely, G., & Leahy, P. (2005). CO2 fluxes in adjacent new and permanent temperate grasslands. Agricultural and Forest Meteorology, 135(1–4), 82–92. https://doi.org/10.1016/j.agrformet.2005.10.005
  • Capell, R., Tetzlaff, D., & Soulsby, C. (2013). Will catchment characteristics moderate the projected effects of climate change on flow regimes in the Scottish Highlands? Hydrological Processes, 27(5), 687–699. https://doi.org/10.1002/hyp.9626
  • Clilverd, H. M., Thompson, J. R., Heppell, C. M., Sayer, C. D., & Axmacher, J. C. (2016). Coupled hydrological/hydraulic modelling of river restoration impacts and floodplain hydrodynamics. River Research and Applications, 32(9), 1927–1948. https://doi.org/10.1002/rra.3036
  • Cohen-Shacham, E., et al. (eds), 2016. Nature-based solutions to address global societal challenges. Gland, Switzerlandxiii + 97pp. http://doi.org/10.2305/IUCN.CH.2016.13.en
  • Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C. R., Renaud, F. G., Welling, R., & Walters, G. (2019). Core principles for successfully implementing and upscaling nature-based solutions. Environmental Science & Policy, 98(February), 20–29. https://doi.org/10.1016/j.envsci.2019.04.014
  • Cooper, R. (2020). Nature-based solutions and water security. Institute of Development Studies.
  • Criss, R. E., & Winston, W. E. (2008). Do nash values have value? Discussion and alternate proposals. Hydrological Processes, 22(14), 2723–2725. https://doi.org/10.1002/hyp.7072
  • Dashora, Y., Dillon, P., Maheshwari, B., Soni, P., Dashora, R., Davande, S., Purohit, R. C., & Mittal, H. K. (2018). A simple method using farmers’ measurements applied to estimate check dam recharge in Rajasthan, India. Sustainable Water Resources Management, 4(2), 301–316. https://doi.org/10.1007/s40899-017-0185-5
  • Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13(1), 313–316. https://doi.org/10.1007/s10040-004-0413-6
  • ESRI and Digital Globe. (2012). World Imagery, Vivid [online]. Esri, DigitalGlobe, Earthstar Geographics, CNES/Airbus DS, GeoEye, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community. Retrieved 20 Feb 2020 from https://www.arcgis.com
  • European Commission. (2020). Nature-based solutions: State of the art in EU-funded projects.
  • Fabris, L., Malcolm, I. A., Buddendorf, W. B., & Soulsby, C. (2018). Integrating process-based flow and temperature models to assess riparian forests and temperature amelioration in salmon streams. Hydrological Processes, 32(6), 776–791. https://doi.org/10.1002/hyp.11454
  • Fennell, J., Geris, J., Wilkinson, M. E., Daalmans, R., & Soulsby, C. (2020). Lessons from the 2018 drought for management of local water supplies in upland areas: A tracer-based assessment. Hydrological Processes, 34(22), 4190–4210. https://doi.org/10.1002/hyp.13867
  • Folegot, S., Hannah, D. M., Dugdale, S. J., Kurz, M. J., Drummond, J. D., Klaar, M. J., Lee-Cullin, J., Keller, T., Martí, E., Zarnetske, J. P., Ward, A. S., & Krause, S. (2018). Low flow controls on stream thermal dynamics. Limnologica, 68(October 2017), 157–167. https://doi.org/10.1016/j.limno.2017.08.003
  • Geris, J., Tetzlaff, D., McDonnell, J., & Soulsby, C. (2015). The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments. Hydrological Processes, 29(7), 1844–1860. https://doi.org/10.1002/hyp.10289
  • Glendenning, C., & Vervoort, R. W. (2008). Quantifying the impacts of rainwater harvesting in a case study catchment: The Arvari River, Rajasthan, India. Australasian Journal of Water Resources, 12(3), 269–280. https://doi.org/10.1080/13241583.2008.11465353
  • Glendenning, C. J., & Vervoort, R. W. (2011). Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Agricultural Water Management, 98(4), 715–730. https://doi.org/10.1016/j.agwat.2010.11.010
  • Green, W. H., & Ampt, G. A. (1911). Studies on soil phyics. The Journal of Agricultural Science, 4(1), 1–24. https://doi.org/10.1017/S0021859600001441
  • Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  • Hallett, P., Hall, R., Lilly, A., Baggaley, B., Crooks, B., Ball, B., Raffan, A., Braun, H., Russell, T., Aitkenhead, M., Riach, D., Rowan, J., and Long, A., 2016. Effect of soil structure and field drainage on water quality and flood risk. Crw2014_03.
  • Hankin, B., etal (2017). Strategies for testing the impact of natural flood risk management measures. In: Theodore Hromadka & Prasada Rao, eds. Flood risk management (pp. 1–40). InTech. http://doi.org/10.5772/intechopen.68677
  • Hänsel, S., Ustrnul, Z., Łupikasza, E., & Skalak, P. (2019). Assessing seasonal drought variations and trends over Central Europe. Advances in Water Resources, 127(September 2018), 53–75. https://doi.org/10.1016/j.advwatres.2019.03.005
  • Heilweil, V. M., & Watt, D. E. (2011). Trench infiltration for managed aquifer recharge to permeable bedrock. Hydrological Processes, 25(1), 141–151. https://doi.org/10.1002/hyp.7833
  • Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C., & Madsen, B. (2003). Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology, 280(1–4), 52–71. https://doi.org/10.1016/S0022-1694(03)00186-0
  • Hewett, C. J. M., etal (2020). Catchment systems engineering: An holistic approach to catchment management. WIRES Water, 7(3), 1–14. https://doi.org/10.1002/wat2.1417
  • Huang, Y., & Bardossy, A. (2020). Impacts of data quantity and quality on model calibration: Implications for model parameterization in data-scarce catchments. Water, 12(9), 2352. https://doi.org/10.3390/w12092352
  • Huang, S., Eisner, S., Magnusson, J. O., Lussana, C., Yang, X., & Beldring, S. (2019). Improvements of the spatially distributed hydrological modelling using the HBV model at 1 km resolution for Norway. Journal of Hydrology, 577(August 2018), 123585. https://doi.org/10.1016/j.jhydrol.2019.03.051
  • Humphreys, M. W., Doonan, J. H., Boyle, R., Rodriguez, A. C., Marley, C. L., Williams, K., Farrell, M. S., Brook, J., Gasior, D., Loka, D., Collins, R. P., Marshall, A. H., Allen, D. K., Yadav, R. S., Dungait, J. A. J., Murray, P., & Harper, J. A. (2018). Root imaging showing comparisons in root distribution and ontogeny in novel Festulolium populations and closely related perennial ryegrass varieties. Food and Energy Security, 7(4), e00145. https://doi.org/10.1002/fes3.145
  • Hund, S. V., Allen, D. M., Morillas, L., & Johnson, M. S. (2018). Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. Journal of Hydrology, 563(May), 1119–1134. https://doi.org/10.1016/j.jhydrol.2018.05.069
  • Isokangas, E., Ronkanen, A., Rossi, P. M., Marttila, H., & Kløve, B. (2019). A tracer-based method for classifying groundwater dependence in boreal headwater streams. Journal of Hydrology, 577(May), 123762. https://doi.org/10.1016/j.jhydrol.2019.05.029
  • Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecological Modelling, 83(1–2), 55–66. https://doi.org/10.1016/0304-3800(95)00084-9
  • Jie, Z., van Heyden, J., Bendel, D., & Barthel, R. (2011). Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeology Journal, 19(8), 1487–1502. https://doi.org/10.1007/s10040-011-0772-8
  • Johnson, A. I., (1967) Specific yield - Compilation of specific yields for various materials - hydrologic properties of various earth materials. Geological Survey Water-Supply Paper 1662-D. https://pubs.usgs.gov/wsp/1662d/report.pdf
  • Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing nash-sutcliffe and kling-gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323–4331. https://doi.org/10.5194/hess-23-4323-2019
  • Kowsar, S. A. (2008). Desertification control through floodwater harvesting: The current state of know-how. In C. Lee & T. Schaaf (Eds.), The future of drylands (pp. 229–241). Springer Netherlands.
  • Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
  • Kravčík, M., Kohutiar, J., Gazovic, M., Kovac, M., Hrib, M., Suty, P., & Kravcikova, D. (2012). After us, the desert and the deluge? Michal Kraví­k/NGO People and Water.
  • Kristensen, K. J., & Jensen, S. E. (1975). A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology, 1949(6), 170–188. http://iwaponline.com/hr/article-pdf/6/3/170/9339/170.pdf
  • Kumar, M. D., Ghosh, S., Patel, A., Singh, O. P., & Ravindranath, R. (2006). Rainwater harvesting in India: Some critical issues for basin planning and research. Land Use and Water Research, 6, 1–17. https://doi.org/10.22004/ag.econ.47964
  • Kuppel, S., Tetzlaff, D., Maneta, M. P., & Soulsby, C. (2018). What can we learn from multi-data calibration of a process-based ecohydrological model? Environmental Modelling & Software, 101, 301–316. https://doi.org/10.1016/j.envsoft.2018.01.001
  • Lane, S. N. (2017). Natural flood management. WIRES Water, 4(3), e1211. https://doi.org/10.1002/wat2.1211
  • Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241. https://doi.org/10.1029/1998WR900018
  • Ma, L., He, C., Bian, H., & Sheng, L. (2016). MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges. Ecological Engineering, 96, 137–149. https://doi.org/10.1016/j.ecoleng.2016.01.008
  • Mansour, M. M., Wang, L., Whiteman, M., & Hughes, A. G. 2018. Estimation of spatially distributed groundwater potential recharge for the United Kingdom. Quarterly Journal of Engineering Geology and Hydrogeology, 51 (2), 247–263. http://doi.org/10.1144/qjegh2017-051
  • Metcalfe, P., Beven, K., Hankin, B., & Lamb, R. (2017a). Simplified representation of runoff attenuation features within analysis of the hydrological performance of a natural flood management scheme. Hydrology and Earth System Sciences Discussions (July), 1–33. https://doi.org/10.5194/HESS-2017-398
  • Metcalfe, P., Beven, K., Hankin, B., & Lamb, R. (2017b). A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29-km 2 scale catchment in the United Kingdom. Hydrological Processes, 31(9), 1734–1748. https://doi.org/10.1002/hyp.11140
  • Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., & Kumar, R. (2019). On the choice of calibration metrics for ‘high-flow’ estimation using hydrologic models. Hydrology and Earth System Sciences, 23(6), 2601–2614. https://doi.org/10.5194/hess-23-2601-2019
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Nelson, D. R., Bledsoe, B. P., Ferreira, S., & Nibbelink, N. P. (2020). Challenges to realizing the potential of nature-based solutions. Current Opinion in Environmental Sustainability, 45(October), 49–55. https://doi.org/10.1016/j.cosust.2020.09.001
  • Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of The Total Environment, 579, 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106
  • Neumann, I., Barker, J., Macdonald, D., & Gale, I. (2004). Numerical approaches for approximating technical effectivessness of artificial recharge structures. British Geological Survey. Commissioned Report, CR/04/265N.
  • Nicholson, A. R., O’Donnell, G. M., Wilkinson, M. E., & Quinn, P. F. (2020). The potential of runoff attenuation features as a natural flood management approach. Journal of Flood Risk Management, 13(S1), 1–14. https://doi.org/10.1111/jfr3.12565
  • Norbury, M., Phillips, H., Macdonald, N., Brown, D., Boothroyd, R., Wilson, C., Quinn, P., & Shaw, D. (2021). Quantifying the hydrological implications of pre- and post-installation willowed engineered log jams in the Pennine Uplands, NW England. Journal of Hydrology, 603(PC), 126855. https://doi.org/10.1016/j.jhydrol.2021.126855
  • Ochoa-Tocachi, B. F., Bardales, J. D., Antiporta, J., Pérez, K., Acosta, L., Mao, F., Zulkafli, Z., Gil-Ríos, J., Angulo, O., Grainger, S., Gammie, G., De Bièvre, B., & Buytaert, W. (2019). Potential contributions of pre-Inca infiltration infrastructure to Andean water security. Nature Sustainability, 2(7), 584–593. https://doi.org/10.1038/s41893-019-0307-1
  • Ó Dochartaigh, B., et al. (2015). Scotland’s aquifers and groundwater bodies. British Geological Survey Open Report, (OR/15/028), 76. https://nora.nerc.ac.uk/id/eprint/511413/1/OR15028.pdf
  • Odoni, N. A., & Lane, S. N. (2010). Assessment of the impact of upstream land management measures on flood flows in Pickering Beck using OVERFLOW.
  • OECD. (2020). Nature-based solutions for adapting to water-related climate risks: Policy perspectives. OECD Environment Policy Paper, no. 21.
  • Ostrowski, M., et al. (2010). Analysis of the time step dependency of parameters in hydrological conceptual models. Technische Universität Darmstadt.
  • Parimalarenganayaki, S., & Elango, L. (2015). Assessment of effect of recharge from a check dam as a method of managed aquifer recharge by hydrogeological investigations. Environmental Earth Sciences, 73(9), 5349–5361. https://doi.org/10.1007/s12665-014-3790-8
  • Pavelic, P., Srisuk, K., Saraphirom, P., Nadee, S., Pholkern, K., Chusanathas, S., Munyou, S., Tangsutthinon, T., Intarasut, T., & Smakhtin, V. (2012). Balancing-out floods and droughts: Opportunities to utilize floodwater harvesting and groundwater storage for agricultural development in Thailand. Journal of Hydrology, 470-471, 55–64. https://doi.org/10.1016/j.jhydrol.2012.08.007
  • Piggott, J. R. (2017). Whisky. In: Current developments in biotechnology and bioengineering (pp. 435–450). Elsevier.
  • Quinn, P., O'Donnell, G., Nicholson, A., Wilkinson, M., Owen, G., Jonczyk, J., Barber, N., Hardwick, M., & Davies, G. (2013). Potential use of runoff attenuation features in small rural catchments for flood mitigation. Newcastle University.
  • Ramchunder, S. J., Brown, L. E., & Holden, J. (2009). Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Progress in Physical Geography: Earth and Environment, 33(1), 49–79. https://doi.org/10.1177/0309133309105245
  • Ramteke, G., Singh, R., & Chatterjee, C. (2020). Assessing impacts of conservation measures on watershed hydrology using MIKE SHE model in the face of climate change. Water Resources Management, 34(13), 4233–4252. https://doi.org/10.1007/s11269-020-02669-3
  • Reaney, S. M. (2022). Spatial targeting of nature-based solutions for flood risk management within river catchments. Journal of Flood Risk Management, e12803. https://doi.org/10.1111/jfr3.12803
  • Refsgaard, J. C., Storm, B., & Clausen, T. (2010). Système hydrologique Europeén (SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling. Hydrology Research, 41(5), 355–377. https://doi.org/10.2166/nh.2010.009
  • Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., & Van Cappellen, P. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010
  • Robins, N. S., & Misstear, B. D. R. (2000). Groundwater in the Celtic regions. Geological Society, London, Special Publications, 182(1), 5–17. http://doi.org/10.1144/GSL.SP.2000.182.01.02
  • Rowland, C. S., Morton, R. D., Carrasco, L., McShane, G., O’Neil, A. W., & Wood, C. M. (2017). Land Cover Map 2015 (vector, GB).
  • Sahani, J., Kumar, P., Debele, S., Spyrou, C., Loupis, M., Aragão, L., Porcù, F., Shah, M. A. R., & Di Sabatino, S. (2019). Hydro-meteorological risk assessment methods and management by nature-based solutions. Science of The Total Environment, 696, 133936. https://doi.org/10.1016/j.scitotenv.2019.133936
  • Salem, S. B. H., Chkir, N., Zouari, K., Cognard-Plancq, A. L., Valles, V., & Marc, V. (2012). Natural and artificial recharge investigation in the Zéroud Basin, central Tunisia: Impact of Sidi Saad Dam storage. Environmental Earth Sciences, 66(4), 1099–1110. https://doi.org/10.1007/s12665-011-1316-1
  • Shanafield, M., & Cook, P. G. (2014). Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. Journal of Hydrology, 511, 518–529. https://doi.org/10.1016/j.jhydrol.2014.01.068
  • Sharda, V. N., Kurothe, R. S., Sena, D. R., Pande, V. C., & Tiwari, S. P. (2006). Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. Journal of Hydrology, 329(1–2), 224–243. https://doi.org/10.1016/j.jhydrol.2006.02.015
  • Shivanna, K., Tirumalesh, K., Noble, J., Joseph, T. B., Singh, G., Joshi, A. P., & Khati, V. S. (2008). Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli district, Uttarakhand. Current Science, 94(8), 1003–1011. https://www.jstor.org/stable/24100794
  • Simpson, M., Ives, M., & Hall, J. (2016). Evaluation of strategies for nature-based solutions to drought: A decision support model at the national scale. Geophysical Research Abstracts, 18, 13870. https://meetingorganizer.copernicus.org/EGU2016/EGU2016-13870.pdf
  • Sisodia, M. (2009). 25 years of evolution – restoring life and hope to a barren land.Tarun Ashram, Bhikampura.
  • Soil Survey of Scotland Staff. (1987). National Soil Map (1:250,000) [online]. The James Hutton Institute. Retrieved 1 Feb 2019 from https://www.hutton.ac.uk/learning/natural-resource-datasets/soilshutton/soils-maps-scotland
  • Somers, L. D., McKenzie, J. M., Zipper, S. C., Mark, B. G., Lagos, P., & Baraer, M. (2018). Does hillslope trenching enhance groundwater recharge and baseflow in the Peruvian Andes? Hydrological Processes, 32(3), 318–331. https://doi.org/10.1002/hyp.11423
  • Soulsby, C., etal (2016). Using geophysical surveys to test tracer-based storage estimates in headwater catchments. Hydrological Processes, 30(23), 4434–4445. https://doi.org/10.1002/hyp.10889
  • Soulsby, C., Piegat, K., Seibert, J., & Tetzlaff, D. (2011). Catchment-scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrological Processes, 25(25), 3960–3976. https://doi.org/10.1002/hyp.8324
  • Soulsby, C., Scheliga, B., Neill, A., Comte, J., & Tetzlaff, D. (2021). A longer-term perspective on soil moisture, groundwater and stream flow response to the 2018 drought in an experimental catchment in the Scottish Highlands. Hydrological Processes, 35(6), 1–16. https://doi.org/10.1002/hyp.14206
  • Sowińska-Świerkosz, B., & García, J. (2021). A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Science of The Total Environment, 787, 147615. https://doi.org/10.1016/j.scitotenv.2021.147615
  • Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38(4), 1718–1736. https://doi.org/10.1002/joc.5291
  • Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell, C. P. J., Snelgrove, J., Weiler, M., & Soulsby, C. (2018). Measuring and modeling stable isotopes of mobile and bulk soil water. Vadose Zone Journal, 17(1), 170149. https://doi.org/10.2136/vzj2017.08.0149
  • Staccione, A., Broccoli, D., Mazzoli, P., Bagli, S., & Mysiak, J. (2021). Natural water retention ponds for water management in agriculture: A potential scenario in northern Italy. Journal of Environmental Management, 292, 112849. https://doi.org/10.1016/j.jenvman.2021.112849
  • Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., & Van Lanen, H. A. J. (2016). Impacts of European drought events: Insights from an international database of text-based reports. Natural Hazards and Earth System Sciences, 16(3), 801–819. https://doi.org/10.5194/nhess-16-801-2016
  • Standen, K., Costa, L. R. D., & Monteiro, J.-P. (2020). In-Channel managed aquifer recharge: A review of current development worldwide and future potential in Europe. Water, 12(11), 3099. https://doi.org/10.3390/w12113099
  • Stiefel, J. M., Melesse, A. M., McClain, M. E., Price, R. M., Anderson, E. P., & Chauhan, N. K. (2009). Effects of rainwater-harvesting-induced artificial recharge on the groundwater of wells in Rajasthan, India. Hydrogeology Journal, 17(8), 2061–2073. https://doi.org/10.1007/s10040-009-0491-6
  • Stocker, T. F., Dahe, Q., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L., Bréon, F.-M., Church, J. A., Cubash, U., Emori, S., Forster, P., Friedlingstein, P., Talley, L. D., Vaughan, D. G., & Xie, S.-P. (2013). Technical summary. In: T. Stocker, et al., ed. Intergovernmental Panel on Climate Change, (Ed.), Climate change 2013 – The physical science basis (pp. 31–116). Cambridge University Press.
  • Svoboda, M., & Fuchs, B. (2017). Handbook of drought indicators and indices. In M. Svoboda & B. A. Fuchs, eds. Handbook of drought indicators and indices (pp. 155–208). Integrated Drought Management Programme.
  • Te Chow, V. (1959). Open-channel hydraulics. McGraw-Hill.
  • Tetzlaff, D., Birkel, C., Dick, J., Geris, J., & Soulsby, C. (2014). Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resources Research, 50(2), 969–985. https://doi.org/10.1002/2013WR014147
  • Thompson, J. R. (2012). Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrology Research, 43(4), 507–530. https://doi.org/10.2166/nh.2012.105
  • Thompson, J. R., Iravani, H., Clilverd, H. M., Sayer, C. D., Heppell, C. M., & Axmacher, J. C. (2017). Simulation of the hydrological impacts of climate change on a restored floodplain. Hydrological Sciences Journal, 62(15), 2482–2510. https://doi.org/10.1080/02626667.2017.1390316
  • Tunaley, C., Tetzlaff, D., Birkel, C., & Soulsby, C. (2017). Using high-resolution isotope data and alternative calibration strategies for a tracer-aided runoff model in a nested catchment. Hydrological Processes, 31(22), 3962–3978. https://doi.org/10.1002/hyp.11313
  • UNCCD. (2019). Land management and drought mitigation. Science-Policy Brief No: 6. Science-Policy Brief.
  • van den Bout, B., & Jetten, V. G. (2020). Catchment-scale multi-process modeling with local time stepping. Environmental Earth Sciences, 79(8), 184. https://doi.org/10.1007/s12665-020-08914-7
  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • Van Steenbergen, F., Tuinhof, A., & Knoop, L. (2011). Transforming landscapes, Transforming lives. The business of sustainable water buffer management. 3R Water Secretariat.
  • Visser-Quinn, A., Beevers, L., Lau, T., & Gosling, R. (2021). Mapping future water scarcity in a water abundant nation: Near-term projections for Scotland. Climate Risk Management, 32(July 2020), 100302. https://doi.org/10.1016/j.crm.2021.100302
  • von Freyberg, J., Moeck, C., & Schirmer, M. (2015). Estimation of groundwater recharge and drought severity with varying model complexity. Journal of Hydrology, 527, 844–857. https://doi.org/10.1016/j.jhydrol.2015.05.025
  • Wang, H., Tetzlaff, D., & Soulsby, C. (2018). Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment. Journal of Hydrology, 558, 520–531. https://doi.org/10.1016/j.jhydrol.2018.02.002
  • Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., & Yao, A. (2012). Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE model for a large watershed in northern China. Hydrology and Earth System Sciences, 16(12), 4621–4632. https://doi.org/10.5194/hess-16-4621-2012
  • Weiss, R., Alm, J., Laiho, R., & Laine, J. (1998). Modeling moisture retention in peat soils. Soil Science Society of America Journal, 62(2), 305. https://doi.org/10.2136/sssaj1998.03615995006200020002x
  • Werritty, A., & Sugden, D. (2012). Climate change and Scotland: Recent trends and impacts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 103(2), 133–147. https://doi.org/10.1017/S1755691013000030
  • Whelchel, A. W., Reguero, B. G., van Wesenbeeck, B., & Renaud, F. G. (2018). Advancing disaster risk reduction through the integration of science, design, and policy into eco-engineering and several global resource management processes. International Journal of Disaster Risk Reduction, 32(June 2017), 29–41. https://doi.org/10.1016/j.ijdrr.2018.02.030
  • Wilkinson, M. E. (2019). Commentary: Mr. Pitek’s land from a perspective of managing hydrological extremes: Challenges in upscaling and transferring knowledge. In T. Hartmann, L. Slavíková, & S. McCarthy (Eds.), Nature-based flood risk management on private land (pp. 69–75). Springer.
  • Wilkinson, M. E., Addy, S., Quinn, P. F., & Stutter, M. (2019). Natural flood management: Small-scale progress and larger-scale challenges. Scottish Geographical Journal, 135(1–2), 23–32. https://doi.org/10.1080/14702541.2019.1610571
  • Wilkinson, M. E., Quinn, P. F., & Welton, P. (2010). Runoff management during the September 2008 floods in the Belford catchment, Northumberland. Journal of Flood Risk Management, 3(4), 285–295. https://doi.org/10.1111/j.1753-318X.2010.01078.x
  • Wilkinson, M., Stutter, M., & Gunter, D. (2016). Feasibility assessment on land management for spring source optimisation at Glenlivet distillery. Report submitted to: Chivas Brothers Ltd. Aberdeen, Dundee.