275
Views
3
CrossRef citations to date
0
Altmetric
Articles

Impacts of combined and separate land cover and climate changes on hydrologic responses of Dhidhessa River basin, Ethiopia

ORCID Icon, & ORCID Icon
Pages 57-70 | Received 19 Jun 2021, Accepted 10 Jul 2022, Published online: 07 Aug 2022

References

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  • Akbari, S., & Singh, R. (2012). Hydrological modeling of catchments using MIKE SHE.  IEEE-International Conference on Advances in Engineering, Science and Management, 335–340. https://ieeexplore.ieee.org/document/6216284
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256
  • Awulachew, S. B., & Horlacher, H. H. B. (2000). Development and application of 2-parameters monthly water balance model in limited data situation, the case of Abayachamo basin, Ethiopia. Journal of Engineering and Architecture, 17, 56–59. https://www.ajol.info/index.php/zj/article/view/124065
  • Baker, T. J., & Miller, S. N. (2013). Using the Soil and Water Analysis Tools (SWAT) to assess land use impact on water resources in an East Africa watershed. Journal of Hydrology, 486, 100–111. https://doi.org/10.1016/j.jhydrol.2013.01.041
  • Belete, M., Deng, J., Abubakar, G. A., Tesgome, M., Wang, K., Woldethadik, M., Zhu, E., Comber, A., & Gudo, A. (2020). Partitioning the impacts of land use/land cover change and climate variability on water supply over the source region of Blue Nile Basin. Land Degradation & Development, 31(15), 2168–2184. https://doi.org/10.1002/ldr.3589
  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., Masunaga, T., Fenta, A. A., Sultan, D., Yibeltal, M., & Ebabu, K. (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Science of The Total Environment, 689, 347–365. https://doi.org/10.1016/j.scitotenv.2019.06.338
  • Brath, A., Montanari, A., & Moretti, G. (2006). Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). Journal of Hydrology, 32491–40(1–4), 141–153. https://doi.org/10.1016/j.jhydrol.2005.10.001
  • Brook, H., Argaw, M., Sulaiman, H., & Abiye, T. A. (2011). The impact of land Use/land cover change on hydrological components due to resettlement activities: SWAT model approach. International Journal of Ecology and Environmental Sciences, 37(1), 49–60. http://www.nieindia.org/Journal/index.php/ijees/article/view/11
  • Chawla, I., & Mujumdar, P. P. (2015). Isolating the impacts of land use and climate change on streamflow. Hydrology and Earth System Sciences, 19(8), 3633–3651. https://doi.org/10.5194/hess-19-3633-2015
  • Chen, J., & Li, X. (2004). Simulation of hydrological response to land-cover changes. Ying Yong Sheng Tai Xue Bao, 15, 833–836. https://pubmed.ncbi.nlm.nih.gov/15320404/
  • Chen, Q., Chen, H., Wang, J., Zhao, Y., Chen, J., & Xu, C. (2019). Impacts of climate change and land use change on hydrological extremes in the Jinsha River Basin. Water, 11(7), 1398. https://doi.org/10.3390/w11071398
  • Chimdessa, K., Quraishi, S., Kebede, A., & Alamirew, T. (2019). Effect of land use land coverchange on river flow and soil loss in Didessa River Basin, South West Blue Nile, Ethiopia. Hydrology, 6(1), 2. https://doi.org/10.3390/hydrology6010002
  • Conway, D. (2000). The climate and hydrology of the Upper Blue Nile River. The Geographical Journal, 1(1), 49–62. https://doi.org/10.1111/j.1475-4959.2000.tb00006.x
  • Drusch, M., & Wood, E. F. (2001). Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the southern great plains hydrology experiment 1997. Journal of Hydrometeorology, 2(2), 181–192. doi:10.1175/1525-7541(2001)002<0181:VAACFT>2.0.CO;2
  • Duveiller, G., Caporaso, L., Abad-Vinas, R., Perugini, L., Grassi, G., Arneth, A., & Cescatti, A. (2020). Local biophysical effects of land use and land cover change: Towards an assessment tool for policy makers. Land use Policy, 91, 104382. https://doi.org/10.1016/j.landusepol.2019.104382
  • Dwarakish, G. S., & Ganasri, B. P. (2015). Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1(1), 1–18. https://doi.org/10.1080/23312041.2015.1115691
  • Elfert, S., & Bormann, H. (2010). Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment. Journal of Hydrology, 383(3–4), 245–255. https://doi.org/10.1016/j.jhydrol.2009.12.040
  • Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators, 50, 79–89. https://doi.org/10.1016/j.ecolind.2014.11.003
  • Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., & Washington, W. M. (2005). The importance of land-cover change in simulating future climates. Science, 310(5754), 1674–1678. https://doi.org/10.1126/science.1118160
  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the andassa watershed, Blue Nile Basin, Ethiopia. Science of The Total Environment, 619–620, 1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191
  • Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT model special section: Overview and insights. Journal of Environmental Quality, 43(1), 1–8. https://doi.org/10.2134/jeq2013.11.0466
  • Geological Survey of Ethiopia (GSE). (2000). Geology of the Nekemte and Gimbi Area. Sheet Number: NC-37-9 and NC-36-12, respectively. Unpublished.
  • Getachew, B., Manjunatha, B. R., & Bhat, H. G. (2021). Modelling projected impacts of climate and land use/land cover changes on hydrological responses in the lake tana basin, upper Blue Nile River Basin, Ethiopia. Journal of Hydrology, 595, 125974. https://doi.org/10.1016/j.jhydrol.2021.125974
  • Griensven, A. V., Ndomba, P., Yalew, S., & Kilonzo, F. (2012). Critical review of SWAT applications in the upper Nile basin countries. Hydrology and Earth System Sciences, 16(9), 3371–3381. https://doi.org/10.5194/hess-16-3371-2012
  • Guo, H., Qi, H., & Jiang, T. (2008). Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin. Journal of Hydrology, 355(1–4), 106–122. https://doi.org/10.1016/j.jhydrol.2008.03.020
  • Haigen, Z., Shengtian, Y., Zhiwei, W., Xu, Z., Ya, L., & Linna, W. (2015). Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. Journal of Geographical Sciences, 25(2), 177–195. https://doi.org/10.1007/s11442-015-1161-3
  • Hailu, G. K., Fekadu, F. F., & Tamene, A. D. (2021). Hydrologic responses to climate and land-use/land-cover changes in the Bilate catchment, Southern Ethiopia. Journal of Water and Climate Change, https://doi.org/10.2166/wcc.2021.281
  • Hibbard, K. A., Hoffman, F. M., Huntzinger, D., & West, T. O. (2017). Changes in land cover and terrestrial biogeochemistry. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.), Climate science special report: Fourth national climate assessment, volume I (pp. 277–302). U.S. Global Change Research Program. https://doi.org/10.7930/J0416V6X
  • Hsu, K., Gupta, H. V., Gao, X., & Sorooshian, S. (1999). Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resources Research, 35(5), 1605–1618. https://doi.org/10.1029/1999WR900032
  • Kabat, P., Claussen, M., Dirmeyer, P. A., Gash, J. H. C., Guenni, L. B., Meybeck, M., Pielke, R. A., Vörösmarty, C. I., Hutjes, R. W. A., & Lütkemeier, S. (Eds.). (2004). Vegetation, water, humans and the climate. A new perspective on an interactive system. Global change. The IGBP series. Springer-Verlag Berlin Heidclberg Gmbl.
  • Kabite, G., & Gessesse, B. (2018). Hydro-geomorphological characterization Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 6(2), 175–183. https://doi.org/10.1016/j.iswcr.2018.02.003
  • Kabite, G., Muleta, M. K., & Gessesse, B. (2020). Spatiotemporal land cover dynamics and drivers for Dhidhessa River Basin (DRB), Ethiopia. Modeling Earth Systems and Environment, 6(2), 1089–1103. https://doi.org/10.1007/s40808-020-00743-8
  • Kabite, G., Muleta, M. K., & Awoke, B. G. (2021). Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB). Ethiopia, Atmospheric Measurement Techniques, 14, 2299–2316. https://doi.org/10.5194/amt-14-2299-2021
  • Kabite, G., Muleta, M. K., Gessesse, B., & Koriche, S. A. (2019). Spatiotemporal climate and vegetation greenness changes and their nexus for Dhidhessa River Basin, Ethiopia. Environmental Systems Research, 8(1), 31. https://doi.org/10.1186/s40068-019-0159-8
  • Kiprotich, P., Wei, X., Zhang, Z., Ngigi, T., Qiu, F., & Wang, L. (2021). Assessing the impact of land use and climate change on surface runoff response using gridded observations and SWAT+. Hydrology, 8(1), 48. https://doi.org/10.3390/hydrology8010048
  • Krysanova, V., & White, M. (2015). Advances in water resources assessment with SWAT-an overview. Hydrological Sciences Journal, 60(5), 771–783. https://doi.org/10.1080/02626667.2015.1029482
  • Legesse, D., Abiye, T. A., Vallet-Coulomb, C., & Abate, H. (2010). Streamflow sensitivity to climate and land cover changes: Meki River, Ethiopia. Hydrology and Earth System Sciences, 14(11), 2277–2287. https://doi.org/10.5194/hess-14-2277-2010
  • Lemann, T., Roth, V., Zeleke, G., Subhatu, A., Kassawmar, T., & Hurni, H. (2019). Spatial and temporal variability in hydrological responses of the Upper Blue Nile basin, Ethiopia. Water, 11(1), 21. https://doi.org/10.3390/w11010021
  • Li, G., Zhang, F., Jing, Y., Liu, Y., & Sun, G. (2017). Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Science of The Total Environment, 596–597, 256–265. https://doi.org/10.1016/j.scitotenv.2017.04.080
  • Li, Z., Liu, W.-z., Zhang, X.-c., & Zheng, F.-I. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1), 35–42. https://doi.org/10.1016/j.jhydrol.2009.08.007
  • Liang, S. (2007). Recent developments in estimating land surface biogeophysical variables from optical remote sensing. Progress in Physical Geography: Earth and Environment, 31(5), 501–516. https://doi.org/10.1177/0309133307084626
  • Liu, Y. (2016). Landscape connectivity in soil erosion research: Concepts, implication, quantification. Geographical Research, 1, 195–202. http://www.dlyj.ac.cn/EN/10.11821/dlyj201601017
  • Luo, K., Tao, F., Moiwo, J. P., & Xiao, D. (2016). Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Scientific Reports, 6(1), 33704. https://doi.org/10.1038/srep33704
  • Ma, X., Xu, J., & Noordwijk, M. V. (2010). Sensitivity of streamflow from a Himalayan catchment to plausible changes in land cover and climate. Hydrological Processes, 24(11), 1379–1390. https://doi.org/10.1002/hyp.7602
  • Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D., & Setegn, S. G. (2011). Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modelling study to support better resource management. Hydrology and Earth System Sciences, 15(7), 2245–2258. https://doi.org/10.5194/hess-15-2245-2011
  • Megersa, A. G., Nura, B. J., & Abebe, D. T. (2021). Modelling climate change impact on the streamflow in the Upper Wabe Bridge watershed in Wabe Shebele River Basin, Ethiopia. International Journal of River Basin Management, https://doi.org/10.1080/15715124.2021.1935978
  • Mekonnen, D. F., Duan, Z., Rientjes, T., & Disse, M. (2018). Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin's streamflow. Hydrology and Earth System Sciences, 22(12), 6187–6207. https://doi.org/10.5194/hess-22-6187-2018
  • Molina-Navarro, E., Trolle, D., Martínez-Pérez, S., Sastre-Merlín, A., & Jeppesen, E. (2014). Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. Journal of Hydrology, 509, 354–366. https://doi.org/10.1016/j.jhydrol.2013.11.053
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation: Version 2009. Texas Water Resources Institute, 1–24.
  • Nejadhashemi, A., Wardynski, B., & Munoz, J. (2011). Evaluating the impacts of land use changes on hydrological responses in the agricultural regions of Michigan and Wisconsin. Hydrology and Earth System Sciences Discussions, 8(2), 3421–3468. https://doi.org/10.5194/hessd-8-3421-2011, 2011
  • Niraula, R., Meixner, T., & Norman, L. M. (2015). Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate change. Journal of Hydrology, 522, 439–451. https://doi.org/10.1016/j.jhydrol.2015.01.007
  • Niu, X. Y., Yan-Hua, W., Hao, Y., Jia-Wen, Z., Jun, Z., Mei-Na, X., & Biao, X. (2015). Effect of land use on soil erosion and nutrients in Dianchi Lake Watershed, China. Pedosphere, 25(1), 103–111. https://doi.org/10.1016/S1002-0160(14)60080-1
  • Oromia Water Works Design and Supervision Enterprise (OWWDSE). (2014). Dhidhessa Sub-Basin Soil Survey Report. Dhidhessa-Dabus Integrated Land Use Planning Study Project. Unpublished.
  • Paul, M., Mohammad, A., & Ahiablame, L. (2016). Spatial and temporal evaluation of hydrological response to climate and land use change in three South Dakota Watersheds. Journal of the American Water Resources Association, 1–20. https://doi.org/10.1111/1752-1688.12483
  • Roth, V., Lemann, T., Zeleke, G., Subhatu, A. T., Nigussie, T. K., & Hurni, H. (2018). Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia. Heliyon, 4(2018), e00771. https://doi.org/10.1016/j.heliyon.2018.e00771
  • Sang, Y.-F., Wang, Z., Liu, C., & Yu, J. (2014). The impact of changing environments on the runoff regimes of the arid Heihe River basin, China. Theoretical and Applied Climatology, 115(1–2), 187–195. https://doi.org/10.1007/s00704-013-0888-y
  • Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., Nelson, E. E., Wolny, D., Olwero, S., Vigerstol, N., Pennington, K., Mendoza, D., Aukema, G., Foster, J., Forrest, J., D, J. C., Arkema, K., Lonsdorf, E., Kennedy, C., … Douglass, J. (2018). InVEST 3.5.0 user’s guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
  • Shawul, A. A., Chakma, S., & Melese, A. M. (2019). The response of water balance components to land cover change based on hydrologic modeling and partial least squares regression (PLS) analysis in the Upper Awash Basin. Journal of Hydrology: Regional Studies, 26(2019), 100640. https://doi.org/10.1016/j.ejrh.2019.100640
  • Shi, P., Ma, X., Hou, Y., Li, Q., Zhang, Z., Qu, S., Chen, C., Cai, T., & Fang, X. (2013). Effects of land-use and climate change on hydrological processes in the Upstream of Huai River, China. Water Resources Management, 27(5), 1263–1278. https://doi.org/10.1007/s11269-012-0237-4
  • Shrestha, S., & Htut, A. Y. (2016). Land use and climate change impacts on the hydrology of the Bago River Basin, Myanmar. Environmental Modeling & Assessment, 21(6), 819–833. https://doi.org/10.1007/s10666-016-9511-9
  • Soytong, P., Janchidfa, K., Phengphit, N., Chayhard, S., & Perera, R. (2016). The effects of land Use change and climate change on water resources in the Eastern Region of Thailand. Journal of Agriculture, Science and Technology, 12, 1695–1722. https://doi.org/10.1016/j.anres.2016.10.005
  • Tamm, O., Maasikamae, S., Padari, A., & Tamm, T. (2018). Modelling the effects of land use and climate change on the water resources in the eastern Basaltic Sea region using the SWAT model. Catena, 167, 78–89. https://doi.org/10.1016/j.catena.2018.04.029
  • Teklay, A., Dile, Y. T., Setegn, S. G., Demissie, S. S., & Asfaw, D. H. (2018). Evaluation of static and dynamic land use data for watershed hydrologic process simulation: A case study in Gummara watershed, Ethiopia. Catena, 172, 65–75. https://doi.org/10.1016/j.catena.2018.08.013
  • Tena, B. A., Srinivasa Rao, G. V. R., & Yerramsetty, A. (2015). Assessment of spatio temporal occurrence of water resources in Didessa Sub-Basin, West Ethiopia. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, 5(1), 105–120.
  • Vitousek, P. M., Mooney, H. A., Lubchenko, J., & Melillo, J. M. (1997). Human domination of earth’s ecosystems. Science, 277(5325), 494–499. https://doi.org/10.1126/science.277.5325.494
  • Wang, R., Kalin, L., Kuang, W., & Tian, H. (2014). Individual and combined effects of land use/cover and climate change on WolfBay watershed streamflow in southern Alabama. Hydrological Processes, 28(22), 5530–5546. https://doi.org/10.1002/hyp.10057
  • Wang, W., Shao, Q., Yang, T., Peng, S., Xing, W., Sun, F., & Luo, Y. (2013). Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrological Processes, 27(8), 1158–1174. https://doi.org/10.1002/hyp.9299
  • Wanger, P., Kumar, S., & Schneider, K. (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 17(6), 2233–2246. https://doi.org/10.5194/hess-17-2233-2013
  • Welde, K., & Gebremariam, B. (2017). Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research, 5(1), 1–16. https://doi.org/10.1016/j.iswcr.2017.03.002
  • Wijesekara, G. N., Gupta, A., Valeo, C., Hasbani, J. G., Qiao, Y., Delaney, P., & Marceau, D. J. (2012). Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. Journal of Hydrology, 412–413, 220–232. https://doi.org/10.1016/j.jhydrol.2011.04.018
  • Worku, T., Khare, D., & Tripathi, S. K. (2017). Modeling runoff–sediment response to land use/ land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environmental Earth Sciences, 76(16), 1–14. https://doi.org/10.1007/s12665-017-6883-3
  • Wu, H., & Chen, B. (2015). Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecological Engineering, 76, 110–121. https://doi.org/10.1016/j.ecoleng.2014.05.014
  • Yang, L., Feng, Q., Yin, Z., Wen, X., Si, J., Li, C., & Deo, R. C. (2017). Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrological Processes, 31(5), 1100–1112. https://doi.org/10.1002/hyp.11098
  • Yang, X., Ren, L., Liu, Y., Jiao, D., & Jiang, S. (2014). Hydrological response to land use and land cover changes in a sub-watershed of West Liaohe River Basin, China. Journal of Arid Land, 6(6), 678–689. https://doi.org/10.1007/s40333-014-0026-4
  • Yin, J., He, F., Xiong, Y., & Qiu, Y. G. (2017). Effect of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in Northwest China. Hydrology and Earth System Sciences, 21(1), 183–196. https://doi.org/10.5194/hess-21-183-2017
  • Yohannes, O. (2008). Water Resources and Inter-Riparian Relations in the Nile Basin: The Search for an integrative Discourse. 270.
  • Zhang, L., Nan, Z., Yu, W., & Ge, Y. (2015). Modeling land-Use and land-cover change and hydrological responses under consistent climate change scenarios in the Heihe River Basin, China. Water Resources Management, 29(13), 4701–4717. https://doi.org/10.1007/s11269-015-1085-9
  • Zhang, L., Nan, Z., Yu, W., & Ge, Y. (2016). Hydrological responses to land-use change scenarios under constant and changed climatic conditions. Environmental Management, 57(2), 412–431. https://doi.org/10.1007/s00267-015-0620-z
  • Zhang, T., Zhang, X., Xia, D., & Liu, Y. (2014). An analysis of land Use change dynamics and Its impacts on hydrological processes in the Jialing River Basin. Water, 6(12), 3758–3782. https://doi.org/10.3390/w6123758
  • Zhou, F., Xu, Y., Chen, Y., Xu, C. Y., Gao, Y., & Du, J. (2013). Hydrological response to urbanization at different spatiotemporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology, 485, 113–125. https://doi.org/10.1016/j.jhydrol.2012.12.040
  • Zhou, J., Liu, Y., Guo, H., & He, D. (2014). Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China. Hydrological Processes, 28(3), 521–533. https://doi.org/10.1002/hyp.9605

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.