251
Views
0
CrossRef citations to date
0
Altmetric
Articles

A process-based mesh-distributed watershed model for water runoff and soil erosion simulation

, &
Pages 71-88 | Received 16 Nov 2021, Accepted 11 Jul 2022, Published online: 01 Aug 2022

References

  • Abban, B., Lai, Y. G., & Greimann, B. P. (2021). Watershed Modeling: Hydrological Model Development and Validation. Project Report ENV-2021-061, Technical Service Center, U.S. Bureau of Reclamation, Denver, Colorado.
  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., & Rasmussen, J. (1986). An introduction to the European hydrological system - Systeme Hydrologique European, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87(1-2), 45–59. https://doi.org/10.1016/0022-1694(86)90114-9
  • Addor, N., & Melsen, L. A. (2019). Legacy rather than adequacy drives the selection of hydrological models. Water Resources Research, 55(1), 378–390. https://doi.org/10.1029/2018WR022958
  • Akan, A. O. (1985). Similarity solution of overland flow on pervious surface. Journal of Hydraulic Engineering, 111(7), 1057–1067. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:7(1057)
  • Alexiades, V., Amiez, G., & Gremaud, P. (1996). Super-time-stepping acceleration of explicit schemes for parabolic problems. Communications in Numerical Methods in Engineering, 12(1), 31–42. https://doi.org/10.1002/(SICI)1099-0887(199601)12:1<31::AID-CNM950>3.0.CO;2-5
  • Allen, R. (2005). Penman-Monteith equation. Encyclopedia of Soils in the Environment, 180–188, ISBN: 978-0-12-348530-4.
  • ASCE (American Society of Civil Engineers). (1993). Criteria for evaluation of watershed models. Journal of Irrigation and Drainage Engineering, 119(3), 429–442. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429)
  • Bardossy, A. (2007). Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, 11(2), 703–710. https://doi.org/10.5194/hess-11-703-2007
  • Barthel, R., & Banzhaf, S. (2016). Groundwater and surface water interaction at the regional-scale – a review with focus on regional integrated models. Water Resources Management, 30(1), 1–32. https://doi.org/10.1007/s11269-015-1163-z
  • Bartholmes, J. C., Thielen, J., Ramos, M. H., & Gentilini, S. (2009). The European flood alert system EFAS - part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrology and Earth System Sciences, 13(2), 141–153. https://doi.org/10.5194/hess-13-141-2009
  • Berg, S., & Sudicky, E. A. (2019). Toward large-scale integrated surface and subsurface modeling. Groundwater, 57(1), 1–2. https://doi.org/10.1111/gwat.12844
  • Beven, K. J. (1985). Distributed models in hydrological forecasting. M.G. Anderson and T.P. Burt, John Wiley (eds), NY, 425–435.
  • Camporese, M., Paniconi, C., Putti, M., & Orlandini, S. (2010). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resources Research, 46(2), W02512. https://doi.org/10.1029/2008WR007536
  • Daniel, E. B., Camp, J. V., LeBoeuf, E. J., Penrod, J. R., Abkowitz, M. D., & Dobbins, J. P. (2010). Watershed modeling using GIS technology: A critical review. Journal of Spatial Hydrology, 10(2), 13–28. https://scholarsarchive.byu.edu/josh/vol10/iss2/4
  • De Mello, C. R., Norton, L. D., Pinto, L. C., Beskow, S., & Curi, N. (2016). Agricultural watershed modeling: A review for hydrology and soil erosion processes. Ciência e Agrotecnologia, 40(1), 7–25. https://doi.org/10.1590/S1413-70542016000100001
  • Devi, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic Procedia, 4, 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126
  • Di Giammarco, P., Todini, E., & Lamberti, P. (1996). A conservative finite element approach to overland flow: The control volume finite element formulation. Journal of Hydrology, 175(1-4), 267–291. https://doi.org/10.1016/S0022-1694(96)80014-X
  • Dottori, F., Kalas, M., Salamon, P., Bianchi, A., Alfieri, L., & Feyen, L. (2017). An operational procedure for rapid flood risk assessment in Europe. Natural Hazards and Earth System Sciences, 17(7), 1111–1126. https://doi.org/10.5194/nhess-17-1111-2017
  • EEA, European Environmental Agency. (2010). Mapping the impacts of natural hazards and technological accidents in Europe: An overview of the last decade. EEA Technical Report. European Environment Agency, Copenhagen, 144.
  • Engel, B., Storm, D., White, M., & Arnold, J. (2007). A hydrologic/water quality model application protocol. Journal of the American Water Resources Association, 43(5), 1223–1236. https://doi.org/10.1111/j.1752-1688.2007.00105.x
  • Ewen, J., Parkin, G., & O’Connell, P. E. (2000). SHETRAN: Distributed river basin flow and transport modeling system. ASCE Journal Hydrologic Engineering, 5(3), 250–258. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(250)
  • Fatichi, S., Vivoni, E., Ogden, F., Ivanov, V., Mirus, G., Downer, D., Camporese, C., Davison, M., Ebel, J., Jones, B., Kim, N., Mascaro, J., Niswonger, G., Restrepo, R., Rigon, P., Shen, R., Sulis, C., & Tarboton D, M. (2016). An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537, 45–60. https://doi.org/10.1016/j.jhydrol.2016.03.026
  • FHWA, Federal Highway Administration. (2002). User’s Manual for FESWMS Flo2DH, Publication No. FHWA-RD-03-053, Federal Highway Administration, U.S. Department of Transportation.
  • Gao, L., & Li, D. (2014). A review of hydrological/water-quality models. Frontiers of Agricultural Science and Engineering, 1(4), 267–276. https://doi.org/10.15302/J-FASE-2014041
  • Gayathri, K. D., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic Procedia, 4(2015), 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126
  • Gupta, H. V., Sorooshian, S., & Yapo, P. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
  • Guy, B. T., Rudra, R. P., Dickenson, W. T., & Sohrabi, T. M. (2009). Empirical model for calculating sediment-transport capacity in shallow overland flow: Model development. Biosystem Engineering, 103(1), 105–115. https://doi.org/10.1016/j.biosystemseng.2009.02.002
  • Islam, Z. (2011). A review on physically based hydrologic modeling. Technical Report, University of Alberta, Canada, 45 p.
  • Jenkerson, C. B., Maiersperger, T. K., & Schmidt, G. L. (2010). eMODIS - a user-friendly data source. U.S. Geological Survey (USGS) Open-File Report, Reston, VA, USA. 2010-1055.
  • Jomaa, S., Barry, D. A., Heng, B. C. P., Brovelli, A., Sander, G. C., & Parlange, J.-Y. (2012). Influence of rock fragment coverage on soil erosionand hydrological response: Laboratory flume experiments and modeling. Water Resources Research, 48(5), W05535. https://doi.org/10.1029/2011WR011255
  • Julien, P. Y. (2002). River mechanics. Cambridge University Press, p. 434.
  • Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., & Thielen, J. (2016). Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling & Software, 75(2016), 68–76. https://doi.org/10.1016/j.envsoft.2015.09.009
  • Kavetski, D., Kuczera, G., & Franks, S. W. (2006). Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resources Research, 42, W03407. https://mountainscholar.org/bitstream/handle/10217/61574/HydrologyPapers_n63.pdf
  • Kilinc, M. Y., & Richardson, E. V. (1973). Mechanics of soil erosion from overland flow generated by simulated rainfall. Hydrology Papers Number 63. Colorado State University, Fort Collins, Colorado.
  • Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, E., Mouche, E., Mügler, C., Park, Y.-J., Refsgaard, J. C., Stisen, S., & Sudicky, E. (2017). The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 53(1), 867–890. https://doi.org/10.1002/2016WR019191
  • Lai, Y. G. (2020). A two-dimensional depth-averaged sediment transport mobile-bed model with polygonal meshes. Water, 12(4), 1032. https://doi.org/10.3390/w12041032
  • Lai, Y. G., Greimann, B. P., & Politano, M. (2019). Watershed Erosion Modeling: Literature Review and SRH-W Design. Project Report ENV-2019-033. Technical Service Center, U.S. Bureau of Reclamation, Denver, Colorado.
  • Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241. https://doi.org/10.1029/1998WR900018
  • Li, Q., Unger, A. J. A., Sudicky, E. A., Kassenaar, D., Wexler, E. J., & Shikaze, S. (2008). Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. Journal of Hydrology, 357(3-4), 317–336. https://doi.org/10.1016/j.jhydrol.2008.05.024
  • Li, X., Cheng, G., Lin, H., Cai, X., Fang, M., Ge, Y., Hu, X., Chen, M., & Li, W. (2018). Watershed system model: The essentials to model complex human-nature system at the river basin scale. Journal of Geophysical Research: Atmospheres, 123(6), 3019–3034. https://doi.org/10.1002/2017JD028154
  • Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J. O., Ferguson, I. M., Ivanov, V., Kim, J., Kolditz, O., Kollet, S. J., & Kumar, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 50(2), 1531–1549. https://doi.org/10.1002/2013WR013725
  • Moges, E., Demissie, Y., Larsen, L., & Yassin, F. (2020). Review: Sources of hydrological model uncertainties and advances in their analysis. Water, 13(1), 28. https://doi.org/10.3390/w13010028
  • Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Moriasi, D., Gitau, M., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE (American Society of Agricultural and Biological Engineers), 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1. A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Nord, G., Esteves, M., Lapetite, J. M., & Hauet, A. (2009). Effect of particle density and inflow concentration of suspended sediment on bedload transport in rill flow. Earth Surface Processes and Landforms, 34(2), 253–263. https://doi.org/10.1002/esp.1710
  • NRC, National Research Council. (2001). Assessing the TMDL approach to water quality management. Committee to assess the scientific basis of the TMDL approach to water pollution reduction. National Academy Press.
  • Overton, D. E., & Brakensiek, D. L. (1973). A kinematic model of surface runoff response. IAHS Pub, 9, 110–112.
  • Paik, K., & Kumar, P. (2010). Optimality approaches to describe characteristic fluvial patterns on landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1545), 1387–1395. https://doi.org/10.1098/rstb.2009.0303
  • Panday, S., & Huyakorn, P. S. (2004). A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Advance Water Resources, 27(4), 361–382. https://doi.org/10.1016/j.advwatres.2004.02.016
  • Parajuli, P. B., & Ouyang, Y. (2013). Chapter 3: Watershed-scale hydrological modeling methods and applications. In P. M. Bradley (Ed.), Current perspectives in contaminant hydrology and water resources sustainability. InTech. https://doi.org/10.5772/47884
  • Peel, M. C., & McMahon, T. A. (2020). Historical development of rainfall-runoff modeling. Wiley Interdisciplinary Reviews: Water, 7(5). https://doi.org/10.1002/wat2.1471
  • Peric, M., & Ferguson, S. (2005). The advantage of polyhedral meshes. Dynamics - Issue 24 (Spring 2005), 4–5.
  • Post, D. E., & Votta, L. G. (2005). Computational science demands a new paradigm. Physics Today, 58(1), 35–41. https://doi.org/10.1063/1.1881898
  • Ramsankaran, R., Kothyari, U. C., Ghosh, S. K., Malcherek, A., & Murugesan, A. (2013). Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58(4), 872–891. https://doi.org/10.1080/02626667.2013.781606
  • Rocscience. (2017). Phase² - 2D finite element program for stress analysis and support design around excavations in soil and rock. Groundwater Verification Manual, Part 1, Rocscience Inc, Toronto, Ontario, Canada.
  • Scherer, U., & Zehe, E. (2015). Predicting land use and soil controls on erosion and sediment redistribution in agricultural loess areas: Model development and cross scale verification. Hydrology and Earth System Sciences, 12, 3527–3592. https://doi.org/10.5194/hessd-12-3527-2015
  • Sharika, U., Senarath, S., Ogdon, F. L., Downer, C. W., & Sharif, H. O. (2000). On the calibration and verification of two-dimensional, distributed, Hortonian, continuous watershed models. Water Resources Research, 36(6), 1495–1510. https://doi.org/10.1029/2000WR900039
  • Singh, J., Knapp, H., & Demissie, M. (2004). Hydrologic modelling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey.
  • Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7(4), 270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)
  • Sosnowski, M., Krzywanski, J., Grabowska, K., & Gnatowska, R. (2018). Polyhedral meshing in numerical analysis of conjugate heat transfer. EPJ Web of Conferences 180, 02096 (2018). https://doi.org/10.1051/epjconf/201818002096EFM2017.
  • Stern, M., Flint, L., Minear, J., Flint, A., & Wright, S. (2016). Characterizing changes in streamflow and sediment supply in the Sacramento River Basin, California, using hydrological simulation program - FORTRAN (HSPF). Water, 8(10), 1–21. https://doi.org/10.3390/w8100432
  • Swets, D. L., Reed, B. C., Rowland, J. R., & Marko, S. E. (1999). A weighted least-squares approach to temporal smoothing of NDVI. In Proceedings of the 1999 ASPRS Annual Conference, from Image to Information, Portland, Oregon, May 17–21, Bethesda, Maryland, American Society for Photogrammetry and Remote Sensing, CD-ROM, 1 disc.
  • USEPA, U.S. Environmental Protection Agency. (2010). National summary of impaired waters and TMDL information. U.S. Environmental Protection Agency. Washington, D.C.. Report available at: http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type = T.
  • USGS, United States Geological Survey. (2014). National Geospatial-Intelligence Agency (NGA), and National Aeronautics and Space Administration (NASA). Shuttle Radar Topography Mission 1 Arc-Second Global. Retrieved 10 October, 2017, from https://earthexplorer.usgs.gov.
  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • van Rijn, L. C. (2007). Unified view of sediment transport by currents and waves. III: Graded beds. Journal of hydraulic engineering. ASCE, 133(7), 761–775. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(761)
  • Velleux, M. L., England, J. F., & Julien, P. Y. (2005). TREX watershed modeling framework user’s manual: Model theory and description. Colorado State University, Dept. Civil and Environmental Engineering, Fort Collins, CO.
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method, 2nd edition. Prentice-Hall.
  • Wang, J., Stern, M., Alpers, C. N., King, V. M., Webster, J., Quinn, N. W. T., & Lai, Y. (2019). Research and Development of a Watershed-Scale Model/Tool for Simulating Effects of Wildfires on Mercury Contamination of Land and Water, Report No. ST-2019-7112-01, Research and Development Office, Bureau of Reclamation, USA.
  • Wicks, J. M., & Bathurst, J. C. (1996). SHESED: A physically based distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology, 175(1-4), 213–236. https://doi.org/10.1016/S0022-1694(96)80012-6
  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194. https://doi.org/10.1080/02723646.1981.10642213
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall-erosion losses. Agricultural handbook number 537. United States Department of Agriculture-Science and Education Administration.
  • Yuan, L., Sinshaw, T., & Forshay, K. J. (2020). Review of watershed-scale water quality and nonpoint source pollution models. Geosciences, 10(25), 1–36. https://doi.org/10.3390/geosciences10010025
  • Zhang, G. H., Wang, L. L., Tang, K. M., Luo, R. T., & Zhang, X. C. (2011). Effects of sediment size on transport capacity of overland flow on steep slopes. Hydrological Sciences Journal, 56(7), 1289–1299. https://doi.org/10.1080/02626667.2011.60917

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.