3,103
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Facile fabrication of SnSe nanorods embedded in GO nanosheet for robust oxygen evolution reaction

, , , , , , , , & show all
Article: 2151298 | Received 06 Jul 2022, Accepted 20 Nov 2022, Published online: 20 Feb 2023

References

  • Poizot P, Dolhem F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci. 2011;4:2003–2019. doi:10.1039/C0EE00731E.
  • Zhironkin S, Cehlár M. Green economy and sustainable development: the outlook. Energies. 2022;15:1167. doi:10.3390/EN15031167.
  • Manjunatha C, Lakshmikant S, Shreenivasa L, et al. Development of non-stoichiometric hybrid Co3S4/Co0.85Se nanocomposites for an evaluation of synergistic effect on the OER performance. Surf Interf. 2021;25:101161. doi:10.1016/J.SURFIN.2021.101161.
  • Gaur A, Krishankant, Pundir V, et al. Intense nano-interfacial interactivity stimulates the OER in a MOF-derived superhydrophilic CuO–NiO heterostructure, sustain. Energy Fuels. 2021;5:5505–5512. doi:10.1039/D1SE01235E.
  • Li J, Chu D, Baker DR, et al. Earth-abundant Fe and Ni dually doped Co2P for superior oxygen evolution reactivity and as a bifunctional electrocatalyst toward renewable energy-powered overall alkaline water splitting. ACS Appl Energy Mater. 2021;4:9969–9981. doi:10.1021/ACSAEM.1C01926/SUPPL_FILE/AE1C01926_SI_004.MP4.
  • Burton AR, Paudel R, Matthews B, et al. Thickness dependent OER electrocatalysis of epitaxial LaFeO3 thin films. J Mater Chem A. 2022;10:1909–1918. doi:10.1039/D1TA07142D.
  • Agarwal S, Yu X, Manthiram A. A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries. Mater Today Energy. 2020;16:100405. doi:10.1016/J.MTENER.2020.100405.
  • Keerthana SP, Rani BJ, Ravi G, et al. Ni doped Bi2WO6 for electrochemical OER activity. Int J Hydrogen Energy. 2020;45:18859–18866. doi:10.1016/J.IJHYDENE.2020.05.135.
  • S YRT, S N, A L, et al. Characterization and OER performance of CrVO 4 nanoparticles. ECS Trans. 2022;107:14335–14342. doi:10.1149/10701.14335ECST.
  • Bayro-Kaiser V, Nelson N. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy. Photosynth Res. 2017;133:49–62. doi:10.1007/S11120-017-0350-6/TABLES/1.
  • Mao X, Li WZ, Yuan Y, et al. Numerical analysis of methanol steam reforming reactor heated by catalytic combustion for hydrogen production. Int J Hydrogen Energy. 2022;47:14469–14482. doi:10.1016/J.IJHYDENE.2022.02.221.
  • Zhang S, He S, Gao N, et al. Hydrogen production from autothermal CO2 gasification of cellulose in a fixed-bed reactor: influence of thermal compensation from CaO carbonation. Int J Hydrogen Energy. 2022. doi:10.1016/J.IJHYDENE.2022.02.018.
  • Tayyab M, Liu Y, Min S, et al. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chinese J Catal. 2022;43:1165–1175. doi:10.1016/S1872-2067(21)63997-9.
  • Chen S, Qiao SZ. Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano. 2013;7:10190–10196. doi:10.1021/NN404444R/SUPPL_FILE/NN404444R_SI_001.PDF.
  • Zhu S, ai Huang L, He Z, et al. Investigation of oxygen vacancies in Fe2O3/CoOx composite films for boosting electrocatalytic oxygen evolution performance stably. J Electroanal Chem. 2018;827:42–50. doi:10.1016/j.jelechem.2018.09.011.
  • Wu LK, Hu JM. A silica co-electrodeposition route to nanoporous Co3O4 film electrode for oxygen evolution reaction. Electrochim Acta. 2014;116:158–163. doi:10.1016/j.electacta.2013.11.010.
  • Zhang L, Li H, Yang B, et al. Promote the electrocatalysis activity of amorphous FeOOH to oxygen evolution reaction by coupling with ZnO nanorod array. J Solid State Electrochem. 2020;24:905–914. doi:10.1007/S10008-020-04540-2/FIGURES/7.
  • Tomboc GM, Kim T, Jung S, et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction. Small. 2022;18:2105680. doi:10.1002/SMLL.202105680.
  • Liu Y, Wang Y, Zhao S, et al. Metal–organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods. 2022;6:2200773. doi:10.1002/SMTD.202200773.
  • Zhao S, Tan C, He CT, et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction, Nat. Energy. 2020;511(5):881–890. doi:10.1038/s41560-020-00709-1.
  • Wang Z, Huang J, Wang L, et al. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew Chemie Int Ed. 2022;61:e202114696. doi:10.1002/ANIE.202114696.
  • Xu N, Zhang Y, Zhang T, et al. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy. 2019;57:176–185. doi:10.1016/J.NANOEN.2018.12.017.
  • Zhao J, Zhang JJ, Li ZY, et al. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small. 2020;16:2003916. doi:10.1002/SMLL.202003916.
  • Song H, Yu J, Tang Z, et al. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv Energy Mater. 2022;12:2102573. doi:10.1002/AENM.202102573.
  • Song H, Wu M, Tang Z, et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew Chemie Int Ed. 2021;60:7234–7244. doi:10.1002/ANIE.202017102.
  • Shen Q, Jiang P, He H, et al., Encapsulation of MoSe 2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery–supercapacitor hybrid devices. Pubs.Rsc.Org. (n.d.). 2019. https://pubs.rsc.org/en/content/articlehtml/2019/nr/c9nr03480c (accessed September 27, 2022).
  • Zhu Y, Huang Z, Hu Z, et al. 3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim Acta. 2018;269:30–37. doi:10.1016/J.ELECTACTA.2018.02.146.
  • Zhang C, Yin H, Han M, et al. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano. 2014;8:3761–3770. doi:10.1021/NN5004315/SUPPL_FILE/NN5004315_SI_001.PDF.
  • Shi X, Wang H, Kannan P, et al. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J Mater Chem A. 2019;7:3344–3352. doi:10.1039/C8TA10912E.
  • Xu P, Wang G, Miao C, et al. Controllable one-pot synthesis of emerging β-Cu2Se nanowire freely standing on nickel foam for high electrochemical energy storage performance. Appl Surf Sci. 2019;463:82–90. doi:10.1016/J.APSUSC.2018.08.147.
  • Jiao Y, Zheng Y, Davey K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy. 2016;110(1):1–9. doi:10.1038/nenergy.2016.130.
  • Ibrahim EMM, Abdel-Rahman LH, Abu-Dief AM, et al. Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater Res Bull. 2018;99:103–108. doi:10.1016/J.MATERRESBULL.2017.11.002.
  • Ibrahim EMM, Abdel-Rahman LH, Abu-Dief AM, et al. The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic properties. Mater Res Bull. 2018;107:492–497. doi:10.1016/J.MATERRESBULL.2018.08.020.
  • Ibrahim EMM, Abu-Dief AM, Elshafaie A, et al. Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena. Mater Chem Phys. 2017;192:41–47. doi:10.1016/J.MATCHEMPHYS.2017.01.054.
  • Abdel Rahman LH, Abu-Dief AM, El-Khatib RM, et al. Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl Organomet Chem. 2018;32:e4174), doi:10.1002/AOC.4174.
  • Yang A, Li T, Jiang S, et al. High-density growth of ultrafine PdIr nanowires on graphene: reducing the graphene wrinkles and serving as efficient bifunctional electrocatalysts for water splitting. Nanoscale. 2019;11:14561–14568. doi:10.1039/C9NR03027A.
  • Wang B, Chen Y, Wang X, et al. rGO wrapped trimetallic sulfide nanowires as an efficient bifunctional catalyst for electrocatalytic oxygen evolution and photocatalytic organic degradation. J Mater Chem A. 2020;8:13558–13571. doi:10.1039/D0TA04383D.
  • Yang D, Su Z, Chen Y, et al. Double-shelled hollow bimetallic phosphide nanospheres anchored on nitrogen-doped graphene for boosting water electrolysis. J Mater Chem A. 2020;8:22222–22229. doi:10.1039/D0TA06766K.
  • Lu Y, Chen Y, Srinivas K, et al. Employing dual-ligand co-coordination compound to construct nanorod-like Bi-metallic (Fe, Co)P decorated with nitrogen-doped graphene for electrocatalytic overall water splitting. Electrochim Acta. 2020;350:136338), doi:10.1016/J.ELECTACTA.2020.136338.
  • Zhou J, Wang Z, Yang D, et al. NiSe2-anchored N, S-doped graphene/Ni foam as a free-standing bifunctional electrocatalyst for efficient water splitting. Nanoscale. 2020;12:9866–9872. doi:10.1039/D0NR00879F.
  • Wang X, Zheng B, Wang B, et al. Hierarchical MoSe2-CoSe2 nanotubes anchored on graphene nanosheets: A highly efficient and stable electrocatalyst for hydrogen evolution in alkaline medium. Electrochim Acta. 2019;299:197–205. doi:10.1016/J.ELECTACTA.2018.12.101.
  • Wang H, Wang X, Yang D, et al. Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. J Power Sources. 2018;400:232–241. doi:10.1016/J.JPOWSOUR.2018.08.027.
  • Liu Z, Xu J, Chen D, et al. Flexible electronics based on inorganic nanowires. Chem Soc Rev. 2015;44:161–192. doi:10.1039/C4CS00116H.
  • Manthiram A, Fu Y, Chung SH, et al. Rechargeable lithium-sulfur batteries. Chem Rev. 2014;114:11751–11787. doi:10.1021/CR500062V.
  • Yang X, Zhang L, Zhang F, et al. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano. 2014;8:5208–5215. doi:10.1021/NN501284Q.
  • Qiu Y, Li W, Zhao W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014;14:4821–4827. doi:10.1021/NL5020475.
  • Digraskar RV, Sapner VS, Mali SM, et al. CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction. ACS Omega. 2019;4:7650–7657. doi:10.1021/ACSOMEGA.8B03587/ASSET/IMAGES/LARGE/AO-2018-03587B_0006.JPEG.
  • Shinde P, Rout CS, Late D, et al. Optimized performance of nickel in crystal-layered arrangement of NiFe2O4/rGO hybrid for high-performance oxygen evolution reaction. Int J Hydrogen Energy. 2021;46:2617–2629. doi:10.1016/J.IJHYDENE.2020.10.144.
  • Ahmed J, Alam M, Majeed Khan MA, et al. Bifunctional electro-catalytic performances of NiMoO4-NRs@RGO nanocomposites for oxygen evolution and oxygen reduction reactions. J King Saud Univ Sci. 2021;33:101317), doi:10.1016/J.JKSUS.2020.101317.
  • Sandhiran N, Ganapathy S, Manoharan Y, et al. Cuo–NiO binary transition metal oxide nanoparticle anchored on rGO nanosheets as high-performance electrocatalyst for the oxygen reduction reaction. Environ Res. 2022;211:112992), doi:10.1016/J.ENVRES.2022.112992.
  • Guo Y, Sun X, Liu Y, et al. One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon N. Y. 2012;50:2513–2523. doi:10.1016/J.CARBON.2012.01.074.
  • Govind Rajan A, Martirez JMP, Carter EA. Facet-Independent oxygen evolution activity of pure β-NiOOH: different chemistries leading to similar overpotentials. J Am Chem Soc. 2020;142:3600–3612. doi:10.1021/JACS.9B13708/SUPPL_FILE/JA9B13708_SI_002.ZIP.
  • Hsu YK, Yu CH, Chen YC, et al. Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting. Electrochim Acta. 2013;105:62–68. doi:10.1016/J.ELECTACTA.2013.05.003.
  • Wang Q, Wang H, Qi S, et al. Coral-Like LaNixFe1−xO3 perovskite catalyst for high-performance oxygen evolution reaction. J. Electrochem Soc. 2022;169:026508), doi:10.1149/1945-7111/AC4AB0.
  • Rathnayake RMNM, Wijayasinghe HWMAC, Pitawala HMTGA, et al. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite. Appl Surf Sci. 2017;393:309–315. doi:10.1016/J.APSUSC.2016.10.008.
  • Chen X, Wang X, Zhang X, et al. Facile and scalable synthesis of heterostructural NiSe2/FeSe2 nanoparticles as efficient and stable binder-free electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy. 2021;46:35198–35208. doi:10.1016/J.IJHYDENE.2021.08.090.
  • Ramadoss M, Chen Y, Hu Y, et al. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation. J Mater Sci Technol. 2021;78:229–237. doi:10.1016/J.JMST.2020.10.058.
  • Wang X, He J, Yu B, et al. Cose2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ. 2019;258:117996. doi:10.1016/J.APCATB.2019.117996.
  • Wang X, Zheng B, Yu B, et al. In situ synthesis of hierarchical MoSe2–CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media. J Mater Chem A. 2018;6:7842–7850. doi:10.1039/C8TA01552J.
  • Wang B, Wang Z, Wang X, et al. Scalable synthesis of porous hollow CoSe2–MoSe2/carbon microspheres for highly efficient hydrogen evolution reaction in acidic and alkaline media. J Mater Chem A. 2018;6:12701–12707. doi:10.1039/C8TA03523G.
  • Yu B, Qi F, Zheng B, et al. Self-assembled pearl-bracelet-like CoSe2–SnSe2/CNT hollow architecture as highly efficient electrocatalysts for hydrogen evolution reaction. J Mater Chem A. 2018;6:1655–1662. doi:10.1039/C7TA08955D.
  • Zhang Y, Yang J, Dong Q, et al. Highly dispersive MoP nanoparticles anchored on reduced graphene oxide nanosheets for an efficient hydrogen evolution reaction electrocatalyst. ACS Appl Mater Interfaces. 2018;10:26258–26263. doi:10.1021/ACSAMI.8B07133/SUPPL_FILE/AM8B07133_SI_001.PDF.
  • Udayabhanu Nagabhushana H, Suresh D, Rajanaika H, Sharma S C, Nagaraju G. Hydrothermal synthesis of TiO2-rGO By green chemical method. Mater Today Proc. 2017;4:11888–11893. doi:10.1016/J.MATPR.2017.09.108.
  • Monson PA. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 2012;160:47–66. doi:10.1016/J.MICROMESO.2012.04.043.
  • Wang S, Lu A, Zhong CJ. Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 2021;8:1–23. doi:10.1186/S40580-021-00254-X/FIGURES/16.
  • Anantharaj S, Subhashini E, K.S.-A.S., undefined. Respective influence of stoichiometry and NiOOH formation in hydrogen and oxygen evolution reactions of nickel selenides. Elsevier. (n.d.). 2019. [cited 2022 November 9]. https://www.sciencedirect.com/science/article/pii/S0169433219314254?casa_token=b9O2Qzm7nYMAAAAA:DqSic23LfuNnRishePpQq1sdTocW0UqYU0CSM1Glyz2g5FLeUTGIIZ4C-XC-nzvHRvr2Zd4uZ00.
  • Mehmood A, Ur-Rehman Z, Altaf M, et al. Niru0.3Se nanoparticles in situ grown on reduced graphene: synthesis and electrocatalytic activity in the oxygen evolution reaction. ChemistrySelect. 2021;6:502–510. doi:10.1002/SLCT.202003711.
  • Shinde DV, De Trizio L, Dang Z, et al. Hollow and porous nickel cobalt perselenide nanostructured microparticles for enhanced electrocatalytic oxygen evolution. Chem Mater. 2017;29:7032–7041. doi:10.1021/ACS.CHEMMATER.7B02666.
  • Anantharaj S, S.N.-I.J. of H. Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: a review. Energy 2020. [cited 2022 November 9] https://www.sciencedirect.com/science/article/pii/S0360319920314294?casa_token=iyUiNXq4XgAAAAAA:DC7KC8S6K85b09nv9oS5uxnITnBkEg389Z6UPodFNQOMcBjTOnjgALJwRBE8wl0Q12l59DYI5xA.
  • Zhang Y, Xu J, Lv L, et al. Electronic engineering of CoSe/FeSe2 hollow nanospheres for efficient water oxidation. Nanoscale. 2020;12:10196–10204. doi:10.1039/D0NR01809K.
  • Gao R, Zhang H, Energy DY-N., Iron diselenide nanoplatelets: Stable and efficient water-electrolysis catalysts. Elsevier. (n.d.). 2017. [cited 2022 November 9]. https://www.sciencedirect.com/science/article/pii/S2211285516305031?casa_token=HHET7153ICgAAAAA:KS3bjCD4NgV4myLkluwQpEcXv980GhULYRVXH847l4×5YyfpjRpg0l4RqIDUcHjXet4p_rg0B-s
  • Liu H, Lu X, Hu Y, et al. Coxfeyn nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. J Mater Chem A. 2019;7:12489–12497. doi:10.1039/C9TA01347D.
  • Liu Y, Cheng H, Lyu M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc. 2014;136:15670–15675. doi:10.1021/JA5085157.
  • Du Y, Cheng G, Luo W. Colloidal synthesis of urchin-like Fe doped NiSe2 for efficient oxygen evolution. Nanoscale. 2017;9:6821–6825. doi:10.1039/C7NR01413A.
  • Feng H, Hu H, Dong H, et al. Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources. 2016;302:164–173. doi:10.1016/J.JPOWSOUR.2015.10.063.
  • Tang PP, Lin X, Yin H, et al. Hierarchically nanostructured nickel-cobalt alloy supported on nickel foam as a highly efficient electrocatalyst for hydrazine oxidation. ACS Sustain Chem Eng. 2020;8:16583–16590. doi:10.1021/ACSSUSCHEMENG.0C05846/ASSET/IMAGES/LARGE/SC0C05846_0005.JPEG.