801
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel azapropazone voltammetric sensors based on zinc oxide nanostructure

, , , , &
Article: 2163583 | Received 27 Jul 2022, Accepted 25 Dec 2022, Published online: 20 Feb 2023

References

  • Hart FD, Huskisson EC. Non-steroidal anti-inflammatory drugs. Drugs. 1984;27:232–255.
  • Rainsford KD. Azapropazone. Dordrecht: Kluwer Academic; 1989.
  • Mousa SA, Rainsford KD, Timmermans PBMWM. Pharmacology of azapropazone: potential utility in the treatment of ischemia/reperfusion injury. Cardiovasc Drug Rev. 1992;10:323–332.
  • Olsson S. Recent developments in pharmacovigilance at UMC. In: Vohora D, Singh G, editors. Pharmaceutical medicine and translational clinical research. London: Academic Press; 2018, p. 435–442.
  • Testa CJ, Hu C, Shvedova K, et al. Design and commercialization of an end-to-end continuous pharmaceutical production process: a pilot plant case study. Org Process Res Dev. 2020;24:2874–2889.
  • Sinha S, Vohora D. Drug discovery and development: an overview. In: Vohora D, Singh G, editors. Pharmaceutical medicine and translational clinical research. London: Academic Press; 2018, p. 19–32.
  • Shibata D. Pharmaceutical medicine and translational clinical research. J Evol Med. 2021;9. Available from: https://www.ashdin.com/articles/pharmaceutical-medicine-and-translational-clinical-research.pdf.
  • Musteata FM. Monitoring free drug concentrations: challenges. Bioanalysis. 2011;3:1753–1768.
  • Bonfilio RBDAM, De Araujo MB, Salgado HRN. Recent applications of analytical techniques for quantitative pharmaceutical analysis: a review. WSEAS Trans Biol Biomed. 2010;7:316–338.
  • Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: a review. Arab J Chem. 2017;10:S1409–S1421.
  • Miossec C, Mille T, Lanceleur L, et al. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry. Food Chem. 2020;322:126765.
  • Can NO, Altiokka G. Determination of azapropazone in its pharmaceutical form by HPLC and flow injection analysis. J Liq Chromatogr Relat Technol. 2005;28:857–869.
  • Rainsford KD. Distribution of azapropazone and its principal 8-hydroxy-metabolite in plasma, urine and gastrointestinal mucosa determined by HPLC. J Pharm Pharmacol. 1985;37:341–345.
  • Spahn H, Thabe K, Mutschler E, et al. Concentration of azapropazone in synovial tissues and fluid. Eur J Clin Pharmacol. 1987;32:303–307.
  • Kline BJ, Wood JH, Beightol LA. The determination of azapropazone and its 6-hydroxy metabolite in plasma and urine by HPLC. Arzneim-Forsch. 1983;33:504–506.
  • Geissler HE, Mutschler E, Faust-Tinnefeldt G. On the determination of azapropazone from plasma by direct quantitative thin-layer chromatography (author's transl). Arzneim-Forsch. 1977;27:1713–1715.
  • Salama FM, Abd El-Sattar OI, Nassar MWI. Utilization of N-bromosuccinimide and N-chlorosuccinimide for colorimetric determination of azapropazone in bulk powder and capsules. Egypt J Pharm Sci. 1996;37:199–209.
  • Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: a review. Arab J Chem. 2017;10:S1409–S1421.
  • Ozkan SA. Electroanalytical methods in pharmaceutical analysis and their validation. New York: HNB Publishing; 2012.
  • Ozkan SA, Kauffmann JM, Zuman P. Electroanalysis in biomedical and pharmaceutical sciences: voltammetry, amperometry, biosensors, applications. Berlin: Springer; 2015.
  • Ziyatdinova G, Budnikov H. Electroanalysis of antioxidants in pharmaceutical dosage forms: state-of-the-art and perspectives. Monatshefte Chem Chem Monthly. 2015;146:741–753.
  • Althagafi II, Ahmed SA, El-Said WA. Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of aflatoxin B1. PloS One. 2019;14:e0210652.
  • Shawky AM, El-Tohamy MF. Highly functionalized modified metal oxides polymeric sensors for potentiometric determination of letrozole in commercial oral tablets and biosamples. Polymers. 2021;13:1384.
  • Elmosallamy MA, Saber AL. Recognition and quantification of some monoamines neurotransmitters. Electroanalysis. 2016;28:2500–2505.
  • Manjunatha JG, Swamy BK, Mamatha GP, et al. Electrochemical studies of dopamine and epinephrine at a poly (tannic acid) modified carbon paste electrode: a cyclic voltammetric study. Int J Electrochem Sci. 2010;5:1236–1245.
  • Manjunatha JG, Swamy BK, Gilbert O, et al. Sensitive voltammetric determination of dopamine at salicylic acid and TX-100, SDS, CTAB modified carbon paste electrode. Int J Electrochem Sci. 2010;5:682–695.
  • Manjunatha JG, Kumara Swamy BE, Mamatha GP, et al. Electrochemical response of dopamine at phthalic acid and triton X-100 modified carbon paste electrode: a cyclic voltammetry study. Int J Electrochem Sci. 2009;4:1469–1478.
  • Charithra MM, Manjunatha JGG, Raril C. Surfactant modified graphite paste electrode as an electrochemical sensor for the enhanced voltammetric detection of estriol with dopamine and uric acid. Adv Pharm Bull. 2020;10:247.
  • Manjunatha JG. Poly (adenine) modified graphene-based voltammetric sensor for the electrochemical determination of catechol, hydroquinone and resorcinol. Open Chem Eng J. 2020;14:52–62.
  • Hendawy HAM, Amin AA, Dessouki HA, et al. Electroanalytical determination of azapropazone at glassy electrode using differential pulse and anodic square-wave voltammetry in pure formulation and pharmaceutical formula. Sci J Oct 6 Univer. 2017;3:28–32.
  • Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon materials in electroanalysis of preservatives: a review. Materials. 2021;14:7630.
  • Svancara I, Kalcher K, Walcarius A, et al. Electroanalysis with carbon paste electrodes. Boca Raton: CRC Press; 2019.
  • Karimi-Maleh H, Karimi F, Rezapour M, et al. Carbon paste modified electrode as powerful sensor approach determination of food contaminants, drug ingredients, and environmental pollutants: a review. Curr Anal Chem. 2019;15:410–422.
  • Tajik S, Beitollahi H, Nejad FG, et al. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Adv. 2020;10:21561–21581.
  • Qian L, Durairaj S, Prins S, et al. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosen Bioelectron. 2021;175:112836.
  • Agnihotri AS, Varghese A, Nidhin M. Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl Surface Sci. Adv. 2021;4:100072.
  • Thejas R, Naveen CS, Khan MI, et al. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Conver Biorefinery. 2022;14(4):1–11.
  • Kassem MA, Hazazi OA, Ohsaka T, et al. Electroanalysis of pyridoxine at copper nanoparticles modified polycrystalline gold electrode. Electroanalysis. 2016;28:539–545.
  • Al-Qahtani SD, Hameed A, Alamrani NA, et al. Zinc oxide nanostructured-based sensors for anodic stripping voltammetric determination of darifenacin. J Electrochem Soc. 2022;169:066512.
  • Al-Qahtani SD, Al-nami SY. Copper oxide nanopowder modified carbon paste electrode for the voltammetric assay of vonoprazan. Arab. J Chem. 2021;14:103254.
  • Ilager D, Shetti NP, Malladi RS, et al. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, Acyclovir. J Mol Liq. 2021;322:114552.
  • Uskaikar HP, Shetti NP, Bukkitgar SD, et al. Applications of zinc oxide nanoparticles as an electrode modifier for ambroxol. Mater Today Proc. 2019;18:963–967.
  • Vernekar PR, Shanbhag MM, Shetti NP, et al. Silica-gel incorporated carbon paste sensor for the electrocatalytic oxidation of famotidine and its application in biological sample analysis. Electrochem Sci Adv. 2021: e2100093.
  • Manasa G, Bhakta AK, Bafna J, et al. An amperometric sensor composed of carbon hybrid-structure for the degradation of aminotriazole herbicide. Environ Res. 2022;212:13541.
  • D’Souza OJ, Mascarenhas RJ, Satpati AK, et al. A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin. Sci China Chem. 2019;62:262–270.
  • British pharmacopeia, the department of health. London: the Stationary Office; 2014.
  • Jouikov V, Simonet J. (2007). Electrochemical reactions of sulfur organic compounds. Encyclopedia of Electrochemistry: Online.
  • Kumar SA, Chen SM. Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal Lett. 2008;41:141–158.
  • Napi MLM, Sultan SM, Ismail R, et al. Electrochemical-based biosensors on different zinc oxide nanostructures: a review. Materials. 2019;12(18):2985.
  • Uikey P, Vishwakarma K. Review of zinc oxide (ZnO) nanoparticles applications and properties. Int J Emerg Techn Comp Sci Elect. 2016;21(2):239–242.
  • Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials. 2014;7:2833–2881.
  • Ranganatha VL, Nithin KS, Khanum SA, et al. Zinc oxide nanoparticles: a significant review on synthetic strategies, characterization and applications. AIP Conf Proc. 2019;2162(1):020089.
  • Stanković D, Mehmeti E, Svorc L, et al. New electrochemical method for the determination of β-carboline alkaloids, harmalol and harmine, in human urine samples and in banisteriopsis caapi. Microchem J. 2015;118:95–100.
  • Remko M, Remková A, Broer R. A comparative study of molecular structure, pKa, lipophilicity, solubility, absorption and polar surface area of some antiplatelet drugs. Int J Mol Sci. 2016;17:388.
  • Zhang Z, Wang E. Electrochemical principles and methods. Beijing: Science Press; 2000.
  • Gosser DK. Cyclic voltammetry: simulation and analysis of reaction mechanisms. New York: VCH; 1993. 43.
  • Laviron E. The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem Interfacial Electrochem. 1979;100:263–270.
  • Elgrishi N, Rountree KJ, McCarthy BD, et al. A practical beginner’s guide to cyclic voltammetry. J Chem Educ. 2018;95:197–206.
  • Laviron E. Theoretical study of a reversible reaction followed by a chemical reaction in thin layer linear potential sweep voltammetry. J Electroanal Chem Interfacial Electrochem. 1972;39:1.
  • Currie LA. International recommendations offered on analytical detection and quantification concepts and nomenclature. Anal Chimica Acta. 1999;391:103–134.
  • Mousa SA, Rainsford KD, Timmermans PBMWM. Pharmacology of azapropazone: potential utility in the treatment of ischemia/reperfusion injury. Cardiovasc Drug Rev. 1992;10(3):323–332.
  • Harrison DO, Thomas R, Underhill AE, et al. Metal complexes of anti-inflammatory drugs. Part II. Azapropazone complexes of iron (III), cobalt (II), nickel (II), copper (II) and zinc (II). J Coord Chem. 1985;14:107–112.