2,631
Views
17
CrossRef citations to date
0
Altmetric
Research Article

The study of new double perovskites K2AgAsX6 (X = Cl, Br) for energy-based applications

, , &
Article: 2170680 | Received 23 Aug 2022, Accepted 16 Jan 2023, Published online: 23 Feb 2023

References

  • Mebed AM, Ali MA. First-principles calculations to investigate structural, elastic, electronic and thermoelectric properties of narrow-band gap half-Heusler RhVX (X = Si, Ge) compounds. Int J Moderen Phys B. 2022. doi:10.1142/S0217979223501631
  • Joshi H, Ram M, Limbu N, et al. Modulation of optical absorption in m-Fe1−xRuxS2 and exploring stability in new m-RuS2. Sci Rep. 2021;11:6601.
  • Rani U, Kamlesh PK, Agarwal R, et al. Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X = Na, K and A = Cl, Br, I): A non-toxic and efficient energy storage materials. Int J Quantum Chem. 2021;121:e26759.
  • Ali MA, Alshahrani T, Murtaza G. Defective perovskites Cs2SeCl6 and Cs2TeCl6 as novel high temperature potential thermoelectric materials. Mater Sci Semicond Process. 2021;127:105728.
  • Mir SA, Gupta DC. Structural and mechanical stabilities, electronic, magnetic and thermophysical properties of double perovskite Ba2LaNbO6: probed by DFT computation. Int J Energy Res. 2021;45:14603–14611.
  • Dar SA, Ali MA, Srivastava V. Investigation on bismuth-based oxide perovskites MBiO3 (M = Rb, Cs, Tl) for structural, electronic, mechanical and thermal properties. Eur Phys J B. 2020;93:102.
  • Benmhidi H, Rached H, Rached D. Ab Initio study of electronic structure, elastic and transport properties of Fluoroperovskite LiBeF3. J Electron Mater. 2017;46:2205–2210.
  • Rached H, Rached D, Rabah M, et al. Full-potential calculation of the structural, elastic, electronic and magnetic properties of XFeO3 (X = Sr and Ba) perovskite. Phys B. 2010;405:3515–3519.
  • Candan A, Kurban M. Electronic structure, elastic and phonon properties of perovskite-type hydrides MgXH3 (X = Fe, Co) for hydrogen storage. Solid State Commun. 2018;281:38–43.
  • Bourachid I, Caid M, Cheref O, et al. Insight into the structural, electronic, mechanical and optical properties of inorganic lead bromide perovskite APbBr3 (A = Li, Na, K, Rb, and Cs). Comput Condens Matter. 2020;24:e00478.
  • Meyer E, Mutukwa D, Zingwe N, et al. Lead-Free Halide Double Perovskites: a review of the structural, optical, and stability properties as well as their viability to Replace Lead Halide Perovskites. Metals. 2018;8:667.
  • Ullah R, Ali MA, Haq BU, et al. Exploring electronic, structural, magnetic and thermoelectric properties of novel Ba2EuMoO6 double perovskite. Mater Sci Semicond Process. 2022;137:106218.
  • Zhao X-G, Yang D, Ren J-C, et al. Rational design of Halide Double Perovskites for optoelectronic applications. Joule. 2018;2:1662–1673.
  • Al-Qaisi SA, Mushtaq M, Alomairy S, et al. First-principles investigations of Na2CuMCl6 (M = Bi, Sb) double perovskite semiconductors: materials for green technology. Mater Sci Semicond Process. 2022;150:106947.
  • Rached H, Bendaoudia S, Rached D. Investigation of iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater Chem Phys. 2017;193:453–469.
  • Al-Qaisi SA, Mushtaq M, Alzahrani J, et al. First-principles calculations to investigate electronic, structural, optical, and thermoelectric properties of semiconducting double perovskite Ba2YBiO6. Micro Nanostruct. 2022;170:207397.
  • Rani U, Kamlesh PK, Agarwal R, et al. Emerging study on Lead-Free Hybrid Double Perovskite (CH3NH3)2AgInBr6: potential material for energy conversion between heat and electricity. Energy Technol. 2022;10:2200002.
  • Soni Y, Randi U, Shukla A, et al. Transition metal-based halides double Cs2ZSbX6 (Z = Ag, Cu, and X = Cl, Br, I) perovskites: A mechanically stable and highly absorptive materials for photovoltaic devices. J Solid State Chem. 2022;314:12342.
  • Pachori S, Agarwal R, Shukla A, et al. Mechanically stable with highly absorptive formamidinium lead halide perovskites [(HC(NH2)2PbX3; X = Br, Cl]: recent advances and perspectives. Int J Quantum Chem. 2021;121:e26671.
  • Igbari F, Wang ZK, Liao LS. Progress of Lead-Free Halide Double Perovskites. Adv Energy Mater. 2019;9:1803150.
  • Wang J, Wang L, Wang F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6. Phys Chem Chem Phys. 2021;23:19308.
  • Stranks SD, Eperon GE, Grancini G, et al. Electron-Hole diffusion lengths exceeding 1 micrometer in an Organometal Trihalide Perovskite Absorber. Science. 2013;342:341–344.
  • Alnujaim S, Bouhemadou A, Chegaar M, et al. Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. Eur Phys J B. 2022;95:114.
  • Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science. 2015;347:967–970.
  • Saeed M, Haq IU, Saleemi AS, et al. First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). J Phys Chem Solids. 2022;160:110302.
  • Lozhkina OA, Murashkina AA, Elizarov MS, et al. Microstructural analysis and optical properties of the halide double perovskite Cs2BiAgBr6 single crystals. Chem Phys Lett. 2018;694:18–22.
  • Filip MR, Hillman S, Haghighirad AA, et al. Band gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett. 2016;7:2579–2585.
  • Bhorde A, Waykar R, Rondiya SR, et al. Structural, electronic, and optical properties of lead-free halide double perovskite Rb2AgBiI6: a combined experimental and DFT study. ES Mater Manuf. 2021;12:43–52.
  • Mathew NP, Kumar NR, Radhakrishnan R. First principle study of the structural and optoelectronic properties of direct bandgap double perovskite Cs2AgInCl6. Mater Today Proc. 2020;33:1252–1256.
  • Nazir G, Mahmood Q, Hassan M, et al. Tuning of band gap by anions (Cl, Br, I) of double perovskites Rb2 AgAsX6 (Cl, Br, I) for solar cells and thermoelectric applications. Phys Scr. 2023;98:025811.
  • Saha U., Debnath K., Satapathi S. doi:10.48550/arXiv.2111.07557
  • Bhala P, Schwarz K, Tran F, et al. WIEN2k: an APW+ lo program for calculating the properties of solids. J Chem Phys. 2020;152:074101.
  • Madsen GKH, Singh DJ. Boltztrap. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006;175:67–71.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.
  • Wu Z, Cohen RE. More accurate generalized gradient approximation for solids. Phys Rev B. 2006;73:235116.
  • Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a Semilocal exchange-correlation potential. Phys Rev Lett. 2009;102:226401.
  • Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA. 1944;30:244–247.
  • Bartel CJ, Sutton C, Goldsmith BR, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv. 2019;5:eaav0693.
  • Ullah R, Ali MA, Khan A, et al. Effect of cation exchange on structural, electronic, magnetic and transport properties of Ba2MReO6 (M = In, Gd). J Magn Magn Mater. 2022;546:168816.
  • Belkacem AA, Rached H, Caid M, et al. The stability analysis and efficiency of the new MAX-phase compounds M3GaC2 (M: Ti or Zr): A first-principles assessment. Results Phys. 2022;38:105621.
  • Rached Y, Caid M, Merabet M, et al. A comprehensive computational investigations on the physical properties of TiXSb (X: Ru, Pt) half-Heusler alloys and Ti2RuPtSb2 double half-Heusler . Int J Quantum Chem. 2022;122:e26875.
  • Rached Y, Caid M, Rached H, et al. Theoretical insight into the stability, magneto-electronic and thermoelectric properties of XCrSb (X: Fe, Ni) Half-Heusler alloys and their superlattices. J Supercond Novel Magn. 2022;35:875–887.
  • Basit MA, Tariq Z, Zahid S, et al. Morphologically divergent development of SnS photocatalysts from Under-Utilized Ionic Precursors of SILAR process. J Cluster Sci. 2022;33:2443–2454.
  • Tariq Z, Zahid S, Ahmad W, et al. Strategic separation of metal sulfides from residual wet-chemical precursors for synchronous production of pure water and nanostructured photocatalysts. Appl Nanosci. 2020;10:2303–2314.
  • Ahmad M, Khan M, Rehman S, et al. Optimization of SiO2–TiO2 nanocomposite in hole-transporting layer (PEDOT:PSS) for enhanced performance of planar Si-based hybrid solar cells. Int J Energy Res. 2022;46:9863–9874.
  • Houari M, Bouadjemi B, Lantri T, et al. Electronic structure and thermoelectric properties of semiconductors K2GeSiX6(X = F, Cl, Br and I) compounds: Ab-Initio investigation. SPIN. 2021;11:2150009.
  • Faghihnasiri M, Beheshtian J, Shayeganfar F, et al. Phase transition and mechanical properties of cesium bismuth silver halide double perovskites (Cs2AgBiX6, X = Cl, Br, I): a DFT approach. Phys Chem Chem Phys. 2020;22:5959–5968.
  • Settouf A, Rached H, Benkhettou N, et al. DFT calculations of structural, optoelectronic and thermodynamic properties of BxAl1-xP alloys. Computat Condens Matter. 2019;19:e00377.
  • Houari M, Bouadjemi B, Abbad A, et al. Lead-Free semiconductors with high absorption: insight into the optical properties of K2GeSnBr6 and K2GeSnI6 halide double perovskites. JETP Lett. 2020;112:364–369.
  • Kibbou M, Haman Z, Bouziani I, et al. Cs2InGaX6 (X = Cl, Br, or I): emergent inorganic Halide Double Perovskites with enhanced optoelectronic characteristics. Curr Appl Phys. 2021;21:50–57.
  • Fox M. “Optical properties of solids” second edition. Oxford: Oxford University Press; 2010.
  • Hussain S, Murtaza G, Khan SH, et al. First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X = S, Se, Te) chalcogenides. Mater Res Bull. 2016;79:73–83.
  • Arribi PV, Fernández PG, Junquera J, et al. Efficient thermoelectric materials using nonmagnetic double perovskites with d0/d6 band filling. Phys Rev B. 2016;94:035124.
  • Mebed AM, Al-Qaisi S, Ali MA. Study of optoelectronic and thermoelectric properties of double perovskites Rb2AgBiX6 (X = Br, I): by DFT approach. Eur Phys J Plus. 2022;137:990.
  • Guermit Y, Drief M, Lantri T, et al. Theoretical investigation of magnetic, electronic, thermoelectric and thermodynamic properties of Fe2TaZ (Z= B, In) compounds by GGA and GGA+U approaches. Comput Condens Matter. 2020;22:e00438.
  • Hadji T, Khalfoun H, Rached H, et al. DFT study with different exchange-correlation potentials of physical properties of the new synthesized alkali-metal based Heusler alloy. The Eur Phys J B. 2020;93:214.
  • Wu T, Gao P. Development of Perovskite-Type materials for thermoelectric application. Materials. 2018;11(6):999.
  • Li J, Ma Z, Sa R, et al. Improved thermoelectric power factor and conversion efficiency of perovskite barium stannate. RSC Adv. 2017;7:32703.
  • Khan TT, Ur S-C. Thermoelectric properties of the Perovskite-Type Oxide SrTi1−xNbxO3 synthesized by solid-state reaction method. Electron Mater Lett. 2018;14:336–341.
  • Oyama T, Muta H, Uno M, et al. Thermoelectric properties of perovskite type barium molybdate. J Alloys Compd. 2004;372:65–69.
  • Cai Y, Xie W, Ding H, et al. Computational study of Halide Perovskite-Derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. Chem Mater. 2017;29(18):7740–7749.