477
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The folding potential description of 9C + 208Pb elastic scattering at 227 MeV

ORCID Icon
Article: 2175577 | Received 10 Sep 2022, Accepted 29 Jan 2023, Published online: 21 Feb 2023

References

  • Blank B, Marchand C, Pravlikoff MS, et al. Total interaction and proton-removal cross-section measurements for the proton-rich isotopes 7Be, 8B, and 9C. Nucl Phys A. 1997;624:242–256.
  • Enders J, Baumann T, Brown BA, et al. Spectroscopic factors measured in inclusive proton-knockout reactions on 8B and 9C at intermediate energies. Phys Rev C. 2003;67:064301.
  • Warner RE, Becchetti FD, Brown JA, et al. Phys Rev C. 2004;69:024612.
  • Fukui T, Ogata K, Minomo K, et al. Determination of the 8B (p,γ) 9C reaction rate from 9C breakup. Phys Rev C. 2012;86:022801.
  • Furutachi N, Kimura M, Doté A, et al. Structures of light halo nuclei. Prog Theor Phys. 2009;122:865–880.
  • Chilug AI, Panin V, Tudor D, et al. AIP conference proceedings. AIP Conf Proceedings. 2019;2076:060001.
  • Hooker JL. Ph.D Thesis,Texas A and M University. 2019.
  • Tanihata I, Hamagaki H, Hashimoto O, et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys Rev Lett. 1985;55:2676.
  • Al-Khalili S. Lecture notes in physics. Lect Notes Phys. 2004;651:77–112.
  • Wiescher M, Görres J, Graff S, et al. The hot proton-proton chains in low-metallicity objects. Astrophys J. 1989;343:352.
  • Yang YY, Liu X, Pang DY, et al. Elastic scattering of the proton drip line nuclei 7Be 8B, and 9C on a lead target at energies around three times the Coulomb barriers. Phys Rev C. 2018;98:044608.
  • Xu Y-L, Han Y-L, Su X-W, et al. Description of elastic scattering induced by the unstable nuclei 9,10,11,13,14C *. Ch Phys C. 2021;45(11):114103.
  • Rong CH, Rangel J, Wu YS, et al. Study of quasi-elastic scattering of 17F+208Pb at energies around Coulomb barrier. Eur Phys J A. 2021;57:143.
  • Duan FF, Yang YY, Lei J, et al. Elastic scattering and breakup reactions of neutron-rich nucleus 11Be on 208Pb at 210 MeV. Phys Rev C. 2022;105:034602.
  • Heo K, Cheoun M, Choi K, et al. Coulomb breakup reaction of loosely bound 17F with dynamic polarization potentials. Phys Rev C. 2022;105:014601.
  • Matsuda Y, Sakaguchi H, Takeda H, et al. Elastic scattering of protons from 9C with a 290 MeV/nucleon 9C beam. Phys Rev C. 2013;87:034614.
  • Murdock DP, Horowitz CJ. Microscopic relativistic description of proton-nucleus scattering. Phys Rev C. 1987;35:1442–1462.
  • Rafi S, Bhagwat A, Haider W, et al. Phys Rev C. 2014;89:067601.
  • Wiringa RB, Stoks VGJ, Schiavilla R. Accurate nucleon-nucleon potential with charge-independence breaking. Phys Rev C. 1995;51:38–51.
  • Gambhir YK, Ring P, Thimet A. Relativistic mean field theory for finite nuclei. Ann Phys. 1990;198:132–179. and references there in.
  • Bonaccorso A, Carstoiu F, Charity RJ. Imaginary part of the 9C−9Be single-folded optical potential. Phys Rev C. 2016;94:034604.
  • Wiringa RB. http://www.phy.anl.gov/theory/research/density/.
  • Pieper SC, Wiringa RB. Quantum Monte Carlo calculations of light nuclei. Annu Rev Nucl Part Sci. 2001;51:53–90.
  • Typel S, Ropke G, Klahn T, et al. Composition and thermodynamics of nuclear matter with light clusters. Phys Rev C. 2010;81:015803.
  • Descouvement P. Microscopic study of proton-capture reactions on unstable nuclei. Nucl Phys A. 1999;646:261–273.
  • Jeukenne JP, Lejeune A, Mahaux C. Optical-model potential in finite nuclei from Reid’s hard core interaction. Phys Rev C. 1977;16:80–96.
  • Chamon LC, Pereira D, Hussein MS, et al. Nonlocal description of the nucleus-nucleus interaction. Phys Rev Lett. 1997;79:5218–5221.
  • Chamon LC, Carlson BV, Gasques LR, et al. Toward a global description of the nucleus-nucleus interaction. Phys Rev C. 2002;66:014610.
  • Broglia RA, Winther A. Heavy Ion reactions. Boulder: West view Press; 2004.
  • Akyüz O, Winther A. Nuclear structure and heavy Ion reactions. In: RA Broglia, CH Dasso, RA Ricci, editor. Proc. Enrico Fermi Int. summer school of physics, 1979. Amsterdam, North Holland; 1981:491.
  • Bertsch G, Borysowicz J, McManus H, et al. Interactions for inelastic scattering derived from realistic potentials. Nucl Phys A. 1977;284:399–419.
  • El-Hammamy MN, El-Nohy NA, El-Azab Farid M, et al. Systematic analysis of 17,19F and 16,17O elastic scattering on 208Pb just below the Coulomb barrier. Chinese J Phys. 2021;73:136–146.
  • Ilieva S. PhD thesis, Johannes Gutenberg-Universitat in Mainz. 2008).
  • Alkhazov GD, Dobrovolsky AV, Egelhof P, et al. Nuclear matter distributions in the 6He and 8He nuclei from differential cross sections for small-angle proton elastic scattering at intermediate energy. Nucl Phys A. 2002;712:269–299.
  • Bush MP, Al-Khalili JS, Tostevin JA, et al. Sensitivity of reaction cross sections to halo nucleus density distributions. Phys Rev C. 1996;53:3009–3013.
  • Alkhazov GD, Novikov IS, Shabelski YM. Nuclear radii of unstable nuclei. Int J Mod Phys E. 2011;20:583–627.
  • Anwar M, El-Naggar B, Behairy KO. Microscopic analysis of the 8B +58 Ni elastic scattering at energies from 20.7 to 29.3 MeV. J Phys Soc of Japan. 2022;91:014201.
  • Barioni A, Zamora JC, Guimarães V, et al. Elastic scattering and total reaction cross sections for the 8B, 7Be, and 6Li+12C systems. Phys Rev C. 2011;84:014603.
  • Bhagwat A, Gambhir YK, Patil SH. Nuclear densities in the neutron-halo region. Eur Phys J A. 2000;8:511–520.
  • Ibraheem AA, El-Azab Farid M, Al-Hajjaji AS. Analysis of 8B proton halo nucleus scattered from 12C and 58Ni at different energies. Braz J Phys. 2018;48:507–512.
  • Anantaraman N, Toki H, Bertsch GF. An effective interaction for inelastic scattering derived from the Paris potential. Nucl Phys A. 1983;398:269–278.
  • Gao-Long Z, Hao L, Xiao-Yun L. Nucleon–nucleon interactions in the double folding model for fusion reactions. Chin Phys B. 2009;18:136–141.
  • Khoa DT, Satchler GR, von Oertzen W. Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials. Phys Rev C. 1997;56:954–969.
  • Behairy KO, El-Azab Farid M, et al. Analysis of strong refractive effect within11Li projectile structure. Chinese Physics C. 2021;45:024101.
  • Antonov AN, Gaidarov MK, Kadrev DN, et al. Charge density distributions And related form factors In neutron-rich light exotic nuclei. Int J Mod Phys E. 2004;13:759–772.
  • El-Azab Farid M, Satchler GR. A density-dependent interaction in the folding model for heavy-ion potentials. Nucl Phys A. 1985;438:525–535.
  • Khoa DT, Phuc NH, Loan DT, et al. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential. Phys Rev C. 2016;94:034612.
  • Chen X, Lui Y-W, Clark HL, et al. Giant resonances in 24Mg and 28Si from 240 MeV 6Li scattering. Phys Rev C. 2009;80:014312.
  • Yang YY, Wang JS, Wang Q, et al. Quasi-elastic scattering of 10,11C and 10B from a natPb target. Phys Rev C. 2014;90:014606.
  • Chamon LC, Gasques LR. Reinterpreting the energy dependence of the optical potential. J Phys G. 2016;43:015107.
  • Aygun M. Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei. Pramana J Phys. 2019;93.
  • Ibraheem AA, Al-Hajjaj AS, El-Azab Farid M. Elastic scattering of one-proton halo nucleus 17F on different mass targets using semi microscopic potentials. Rev Mex Fis. 2019;65:168–174.
  • Anwar M. Semimicroscopic analysis of 6Li elastic scattering at 40 MeV/nucleon. Phys Rev C. 2020;101:064617.
  • Wang K, Yang YY, Moro AM, et al. Elastic scattering and breakup reactions of the proton drip-line nucleus 8B on 208Pb at 238 MeV. Phys Rev C. 2021;103:024606.
  • Olorunfunmi SD, Bahini A. Reanalysis of 10B+120Sn elastic scattering cross section using São Paulo potential version 2 and Brazilian nuclear potential. Braz J of Phys. 2022;52:11.
  • Satchler GR. A simple effective interaction for peripheral heavy-ion collisions at intermediate energies. Nucl Phys A. 1994;579:241–255.
  • Knyarkov OH, Hefter EF. An analytical folding potential for deformed nuclei. Z Phys A. 1981;301:277–282.
  • El-Azab Farid M, Hassanain MA. Density-independent folding analysis of the Li elastic scattering at intermediate energies. Nucl Phys A. 2000;678:39–75.
  • El-Azab Farid M, Hassanain MA. Folding model analysis of 6,7Li elastic scattering at 12.5–53 MeV/u. Nucl Phys A. 2002;697:183–205.
  • Esmael EH, Abou Stait SAH, Zedan MEM, et al. Density-dependent effect on alpha -12C elastic scattering. J Phys G. 1991;17( ):1755–1768.
  • Esmael EH, Allam MA. Acta Phys Pol B. 2008;39.
  • El-Hammamy MN, Attia A. 16C-elastic scattering examined using several models at different energies. Pramana J Phys. 2018;90(5):66.
  • El-Nohy NA, El-Hammamy MN, El-Azab Farid M, et al. Int Astronomy and Astrophysics Research Journal. 2019;1(1):1.
  • Poling JE, Norbeck E, Carlson RR. Elastic scattering of lithium by 9Be, 10B, 12C, 13C, 16O, and 28Si from 4 to 63 MeV. Phys Rev C. 1976;13:648–660.
  • Clarke NM. private communication.
  • Satchler GR, Love WG. Folding model potentials from realistic interactions for heavy-ion scattering. Phys Rep. 1979;55:183–254.
  • Cook J. DFPOT - A program for the calculation of double folded potentials. Comput Phys Comm. 1982;25:125–139.
  • Gupta RK, Singh D, Greiner W. Semiclassical and microscopic calculations of the spin-orbit density part of the skyrme nucleus-nucleus interaction potential with temperature effects included. Phys Rev C. 2007;75:024603.
  • Ghodsi ON, Torabi F. Comparative study of fusion barriers using skyrme interactions and the energy density functional. Phys Rev C. 2015;92:064612.
  •  Dobrovolsky AV, Korolev GA, Inglessi AG, et al. Nuclear-matter distribution in the proton-rich nuclei 7Be and 8B from intermediate energy proton elastic scattering in inverse kinematics. Nucl Phys A. 2019;989:40–58.
  • Umemoto Y, Hirenzaki S, Kume K, et al. Isotope dependence of deeply bound pionic states in Sn and Pb. Phys Rev C. 2000;62(2):024606.
  • Brandan ME, Satchler GR. The interaction between light heavy-ions and what it tells us. Phys Rep. 1997;258:143–243.
  • Perez-Torres R, Belyaeva TL, Aguilera EF. Fusion and elastic-scattering cross-section analysis of the 12C + 12C system at low energies. Phys At Nucl. 2006;69(8):1372–1382.
  • Korda VY, Molev AS, Klepikov VF, et al. Unified model-independent S-matrix description of nuclear rainbow, prerainbow, and anomalous large-angle scattering in 4He− 40Ca elastic scattering. Phys Rev C. 2015;91:024619.
  • Alharbi WR, Ibraheem AA, El-Azab Farid M. Theoretical investigation of 6,8He halo nuclei by using microscopic optical potentials. J Korean Phys Soc. 2013;63(5):965–969.
  • Rusek K, Moroz Z. Čaplar R. Egelhof P. Möbius K.-H.. Spin-orbit potentials for elastic scattering of polarized 6Li ions from 12C and 58Ni. Nucl Phys A. 1983;407:208–220.
  • El-Azab Farid M, Ibraheem AA, Al-Hajjaji AS. Investigation of 17F+p elastic scattering at near-barrier energies. Eur Phys J A. 2015;51:134.
  • Roubos D, Pakou A, Alamanos N, et al. Radial sensitivity of elastic scattering at near barrier energies for weakly bound and tightly bound nuclei. Phys Rev C. 2006;73(R):051603.
  • Zisman MS, Cramer JG, Goldberg DA, et al. Dominance of strong absorption in 9Be+28Si elastic scattering. Phys Rev C. 1980;21(6):2398–2416.
  • Santra S, Kailas S, Ramachandran K, et al. Reaction mechanisms involving weakly bound 6Li and 209Bi at energies near the Coulomb barrier. Phys Rev C. 2011;83:034616.
  • Alvarez MA, Fernández-García J. P. León-García J. L. Rodríguez-Gallardo M. Gasques L. R.. Systematic study of optical potential strengths in reactions on 120Sn involving strongly bound, weakly bound, and exotic nuclei. Phys Rev C. 2019;100:064602.
  • Hu L, Song Y, Hou Y, et al. The refractive scattering of 17F+12C. EPJ Web of Conferences. 2020;239:03010.
  • Blackmon JC, Carstoiu F, Trache L, et al. Elastic scattering of the proton drip-line nucleus F17. Phys Rev C. 2005;72:034606.
  • Frahn WE. Diffraction scattering of charged particles. Ann Phys. 1972;72:524–547.
  • Chen W-D, Guo H-R, Sun W-L, et al. Microscopic study of 7Li-nucleus potential *. Chin Phys C. 2020;44(5):054109.