739
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach

, & ORCID Icon
Article: 2183702 | Received 02 Nov 2022, Accepted 19 Feb 2023, Published online: 02 Mar 2023

References

  • Goren SL. On free convection in water at 4°C. Eng Sci. 1966;21:515–518.
  • Vajravelu K, Cannon JR, Leto J, et al. Nonlinear convection at a porous flat plate with application to heat transfer from a dike. J Math Anal Appl. 2003;277:609–623.
  • RamReddy C, Naveen P, Srinivasacharya D. Effects of nonlinear boussinesq approximation and double dispersion on free convective flow of an ostwald-de waele power-Law fluid along an inclined plate under convective thermal condition. Nanofluids. 2018;7:1247–1257.
  • Mahanty D, Babu R, Mahanthesh B. Theoretical and analytical analysis of convective heat transport of radiated micropolar fluid over a vertical plate under nonlinear Boussinesq approximation. Model Mater Struct. 2020;16:915–936.
  • Rajeev A, Mahanthesh B. Multilayer flow and heat transport of nanoliquids with nonlinear Boussinesq approximation and viscous heating using differential transform method. Heat Transfer. 2021;50:4309–4327.
  • Okoya SS, Hassan AR, Salawu SO. On free convection flow of a moving vertical permeable plate with quadratic Boussinesq approximation and variable thermal conductivity. Heat Transf Res. 2021;52:55–66.
  • Thriveni K, Mahanthesh B. Significance of variable fluid properties on hybrid nanoliquid flow in a micro-annulus with quadratic convection and quadratic thermal radiation: response surface methodology. Int Commun Heat Mass Transf. 2021;124:105264.
  • Bhatti MM, Shahid A, Sarris IE, et al. Spectral relaxation computation of Maxwell fluid flow from a stretching surface with quadratic convection and non-Fourier heat flux using Lie symmetry transformations. Int J Mod Phys. 2023;37(9):2350082 (21 pages).
  • Thriveni K, Mahanthesh B. Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation. Eur Phys J Plus. 2020;135:459. DOI:10.1140/epjp/s13360-020-00484-8
  • Mahanthesh B. Quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid flow. In: Mahanthesh B., editor. Mathematical fluid mechanics. De Gruyter; 2021. p. 13–54. DOI:10.1515/9783110696080
  • Alsubie A. Boundary layer Darcy-Forchheimer couple stress hybrid nanofluid flow over a quadratic stretching surface due to nonlinear thermal radiation. J Taibah Univ Sci. 2021;15:1188–1195.
  • Jha BK, Samaila G. Impact of nonlinear thermal radiation on nonlinear mixed convection flow near a vertical porous plate with convective boundary condition. Proc Inst Mech Eng Part E J Process Mech Eng. 2022;236(2):600–608. DOI:10.1177/09544089211064386
  • H. Alfvén, existence of electromagnetic-hydrodynamic waves. Nature. 1942;150:405–406.
  • Laughlin DR. A magnetohydrodynamic angular motion sensor for anthropomorphic test device instrumentation. SAE Trans. 1989;98:1648–1682. JSTOR. http://www.jstor.org/stable/44472409
  • Jang J, Lee SS. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Actuators A Phys. 2000;80:84–89.
  • Introduction. Geophys Astrophys Fluid Dyn. 2007;101:169–169.
  • Bityurin V, Zeigarnik V, Kuranov A. On a perspective of MHD technology in aerospace applications, In: 27th plasma dynamics and lasers conference, American Institute of Aeronautics and Astronautics, Reston, Virigina, 1996.
  • Farrokhi H, Otuya DO, Khimchenko A, et al. Magnetohydrodynamics in biomedical applications. In: Sheikholeslami Kandelousi M, Ameen S, Shaheer Akhtar M, et al., editors. Nanofluid flow in porous media, IntechOpen. 2020. DOI:10.5772/intechopen.87109
  • Kumar KA, Reddy JVR, Sugunamma V, et al. Mhd flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink. Inter J Fluid Mech Res. 2019;46:407–425.
  • Yasmin A, Ali K, Ashraf M. Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet. Sci Rep. 2020;10:4581. DOI:10.1038/s41598-020-61439-8
  • Kempannagari AK, Buruju RR, Naramgari S, et al. Effect of joule heating on MHD non-Newtonian fluid flow past an exponentially stretching curved surface. Heat Transfer. 2020;49:3575–3592.
  • Khan MR, Abidi A, Madiouli J, et al. Impact of Joule heating and viscous dissipation on magnetohydrodynamics boundary layer flow of viscous nanofluid subject to the stretched surface. Proc Inst Mech Eng Part E J Process Mech Eng. 2021: 095440892110641. DOI:10.1177/09544089211064120
  • Khashi’ie NS, Arifin NM, Pop I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alex Eng J. 2022;61:1938–1945.
  • Khan MR, Algarni S, Alqahtani T, et al. Numerical analysis of a time-dependent aligned MHD boundary layer flow of a hybrid nanofluid over a porous radiated stretching/shrinking surface. Waves Rand Compl Media. 2022: 1–17. DOI:10.1080/17455030.2022.2067367
  • Seadawy AR, Arshad M, Lu D. The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows. Chaos Solitons Fractals. 2020;139:110141.
  • Anjali Devi SP, Ganga B. Effects of viscous and joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium. Nonlinear Anal Model Control. 2009;14:303–314.
  • Rashad AM, EL-Kabeir SMM. Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. Porous Media. 2010;13:75–85.
  • Mukhopadhyay S, Mandal IC. Magnetohydrodynamic (MHD) mixed convection slip flow and heat transfer over a vertical porous plate. Eng Sci Technol Int J. 2015;18:98–105.
  • Uddin MS. Viscous and joules dissipation on MHD flow past a stretching porous surface embedded in a porous medium. J Appl Math Phys. 2015;03:1710–1725.
  • Bhargava R, Chandra H. Numerical simulation of MHD boundary layer flow and heat transfer over a nonlinear stretching sheet in the porous medium with viscous dissipation using hybrid approach, ArXiv [Physics.Flu-Dyn]. (2017).
  • Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int Commun Heat Mass Transf. 2020;113:104494.
  • Zhang L, Tariq N, Bhatti MM, et al. Mixed convection flow over an elastic, porous surface with viscous dissipation: A robust spectral computational approach. Fractal Fract. 2022;6:263.
  • Kresnik P. Wasserbewegung durch boden: neue filtrations-versuche. Vienna: Spielhagen & Schurich; 1906.
  • Muskat M. The flow of homogeneous fluids through porous media. Dordrecht: Kluwer Academic; 1982.
  • Umavathi JC. Analysis of flow and heat transfer in a vertical rectangular duct using a Non-darcy model. Porous Media. 2013;96:527–545.
  • Vishnu Ganesh N, Abdul Hakeem AK, Ganga B. Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng J. 2018;9:939–951.
  • Tarakaramu N, Babu KR, Satyanarayana PV. Effect of nonlinear thermal radiation, heat source on MHD 3D Darcy-Forchheimer flow of nanofluid over AA porous medium with chemical reaction. Int J Eng Technol. 2018;7:605–609.
  • Agunbiade SA, Dada MS. Effects of viscous dissipation on convective rotatory chemically reacting Rivlin–Ericksen flow past a porous vertical plate. J Taibah Univ Sci. 2019;13:402–413.
  • Idowu AS, Falodun BO. Soret–Dufour effects on MHD heat and mass transfer of Walter’s-B viscoelastic fluid over a semi-infinite vertical plate: spectral relaxation analysis. J Taibah Univ Sci. 2019;13:49–62.
  • Tlili I, Shahmir N, Ramzan M, et al. A novel model to analyze Darcy Forchheimer nanofluid flow in a permeable medium with entropy generation analysis. J Taibah Univ Sci. 2020;14:916–930.
  • Hassan M, Mebarek-Oudina F, Faisal A, et al. Thermal energy and mass transport of shear thinning fluid under effects of low to high shear rate viscosity. Int J Thermofluids. 2022;15:100176.
  • Hassan M, Ali S, Aich W, et al. Transport pattern of non-Newtonian mass and thermal energy under two diverse flow conditions by using modified models for thermodynamics properties. Case Stud Therm Eng. 2022;29:101714.
  • Arshad M, Lu D, Wang J. (N +1)-dimensional fractional reduced differential transform method for fractional order partial differential equations. Nonlinear Sci Numer Simul. 2017;48(2017):509–519.
  • Bhatti MM, Öztop HF, Ellahi R. Study of the magnetized hybrid nanofluid flow through a flat elastic surface with applications in solar energy. Materials (Basel). 2022;15:7507.
  • Khashi’ie NS, Arifin NM, Nazar R, et al. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chin J Phys. 2020;64:251–263.
  • A.S. Butt, A. Ali, Entropy analysis of magnetohydrodynamic flow and heat transfer over a convectively heated radially stretching surface, J Taiwan Inst Chem Eng. 45 (2014) 1197–1203.