568
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of the DNA-binding interactions of 5-hydroxymethylfurfural and its synthesized derivative, 5, 5’[oxy-bis(methylene)]bis-2-furfural: experimental, DFT and docking studies

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2183705 | Received 24 Aug 2022, Accepted 20 Feb 2023, Published online: 02 Mar 2023

References

  • Severin I, Dumont C, Jondeau-Cabaton A, et al. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays. Toxicol Lett. 2010;192:189–194.
  • Morales FJ. Hydroxymethylfurfural (HMF) and related compounds. In: Stadler R, Lineback DR, editors. Process-induced food toxicants: occurrence, formation, mitigation and health risks. New Jersey: John Wiley and Sons, Inc; 2009. p. 135–179.
  • Abraham K, Gürtler R, Berg K, et al. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol Nutr Food Res. 2011;55:667–678.
  • Lin N, Liu T, Lin L, et al. Comparison of in vivo immunomodulatory effects of 5-hydroxymethylfurfural and 5, 5′-oxydimethylenebis (2-furfural). Regul Toxicol Pharmacol. 2016;81:500–511.
  • Wölkart G, Schrammel A, Koyani CN, et al. Cardioprotective effects of 5-hydroxymethylfurfural mediated by inhibition of L-type Ca2+ currents. Br J Pharmacol. 2017;174:3640–3653.
  • Matzi V, Lindenmann J, Muench A, et al. The impact of preoperative micronutrient supplementation in lung surgery. A prospective randomized trial of oral supplementation of combined α-ketoglutaric acid and 5-hydroxymethylfurfural. Eur J Cardio-Thoracic Surg. 2007;32:776–782.
  • Li W, Qu XN, Han Y, et al. Ameliorative effects of 5-hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice. Int J Mol Sci. 2015;16:2446–2457.
  • Arribas-Lorenzo G, Morales FJ. Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food Chem Toxicol. 2010;48:644–649.
  • Shapla UM, Solayman M, Alam N, et al. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J. 2018;12:35.
  • Durling LJK, Busk L, Hellman BE. Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem Toxicol. 2009;47:880–884.
  • Zhou Z, Hu X, Zhang G, et al. Exploring the binding interaction of Maillard reaction by-product 5-hydroxymethyl-2-furaldehyde with calf thymus DNA. J Sci Food Agric. 2019;99:3192–3202.
  • Shahabadi N, Hadidi S. Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;96:278–283.
  • Luo YJ, Wang BL, Kou SB, et al. Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. J Biomol Struct Dyn. 2020;38:4210–4220.
  • Shi JH, Zhou KL, Lou YY, et al. Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2018;193:14–22.
  • Shi JH, Liu TT, Jiang M, et al. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking. Photobiol B Biol. 2015;147:47–55.
  • Shi JH, Chen J, Wang J, et al. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim Acta – Part A Mol Biomol Spectrosc. 2015;136:443–450.
  • DeMarini DM. The role of genotoxicity in carcinogenesis. In: Baan R, Stewart B, Straif K, editors. Tumour site concordance and mechanisms of carcinogenesis. Lyon: International Agency for Research on Cancer; 2019. p. 107–116.
  • Wu HC, Kehm R, Santella RM, et al. DNA repair phenotype and cancer risk: a systematic review and meta-analysis of 55 case–control studies. Sci Rep. 2022;12:3405.
  • Katerji M, Duerksen-Hughes PJ. DNA damage in cancer development: special implications in viral oncogenesis. Am J Cancer Res. 2021;11(11):3956–3979.
  • Li C, Wang H, Juárez M, et al. Structural characterization of amadori rearrangement product of glucosylated Nα-acetyl-lysine by nuclear magnetic resonance spectroscopy. Int J Spectrosc. 2014;2014:1–6. 789356. doi:10.1155/2014/789356
  • Kuster BFM. 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch-Stärke. 1990;42:314–321.
  • Lewkowski J. Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. Arkivoc. 2001;1:17–54.
  • Larousse C, Rigal L, Gaset A. Synthesis of 5,5′-oxydimethylenebis (2-furfural) by thermal dehydration of 5-hydroxymethyl-2-furfural in the presence of dimethylsulfoxide. J Chem Technol Biotechnol. 1992;53:111–116.
  • Reddy PR, Rajeshwar S, Satyanarayana B. Synthesis, characterization of new copper (ii) Schiff base and 1,10 phenanthroline complexes and study of their bioproperties. J Photochem Photobiol B Biol. 2016;160:217–224.
  • Sharma D, Ojha H, Pathak M, et al. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin. J Mol Struct. 2016;1118:267–274.
  • Bode B, Gordon M. Macmolplt: a graphical user interface for GAMESS. J Mol Graph Model. 1998;16:133–138.
  • Wani TA, Alsaif N, Bakheit AH, et al. Interaction of an abiraterone with calf thymus DNA: investigation with spectroscopic technique and modelling studies. Bioorg Chem. 2020;100:103957.
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, et al. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acid Res. 2005;33:W363–W367.
  • Teoh TC, Salmah I, Tang JM. Molecular dynamics and docking of biphenyl: a potential attachment inhibitor for HIV-1 gp120 glycoprotein. Trop J Pharm Res. 2014;13:339–346.
  • Mashiach E, Schneidman-Duhovny D, Andrusier N, et al. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008;36:W229–W232.
  • Hashim A, Poulose V, Thiemann T. One pot o-alkylation/Wittig olefination of hydroxybenzaldehydes in DMSO. Chem Proc. 2021;3:99.
  • Kazemia M, Noori Z, Kohzadi H, et al. A mild and efficient procedure for the synthesis of ethers from various alkyl halides. Chem  . Commun. 2013;1:43–50.
  • Farrell N, Kellett SA, Farrell NP, et al. Molecular methods for assessment of non-covalent metallodrug–DNA interactions. Chem Soc Rev. 2019;48:971.
  • Ashok A, Banerjee S, Anand N, et al. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochem Biophys Reports. 2019;18:100629.
  • Long EC, Barton JK. On demonstrating DNA intercalation. Acc Chem Res. 1990;23:271–273.
  • Łączkowski KZ, Anusiak J, Switalska M, et al. Synthesis, molecular docking, ctDNA interaction, DFT calculation and evaluation of antiproliferative and anti-Toxoplasma gondii activities of 2,4-diaminotriazine-thiazole derivatives. Med Chem Res. 2018;27:1131–1148.
  • Adegoke OA, Ghosh M, Jana A, et al. Studies of the interactions of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes with CT-DNA in aqueous medium. J Mol Liq. 2012;174:17–25.
  • Mehran S, Rasmi Y, Karamdel HR, et al. Study of the Binding Interaction between Wortmannin and Calf Thymus DNA : Multispectroscopic and Molecular Docking Studies. Evidence-Based Compimentary Altern Med. 2019;2019:4936351.
  • Deghady A, Hussein R, Alhamzani A, et al. Density functional theory and molecular docking investigations of the chemical and antibacterial activities for 1-(4-Hydroxyphenyl)-3-phenylprop-2-en-1-one. Molecules. 2021;26:3631.
  • Alsaedi S, Babgi BA, Abdellatif MH, et al. Effect of net charge on DNA-binding, protein-binding and anticancer properties of copper (I) phosphine-diimine complexes. J Inorg Organomet Polym Mater. 2021;31:3943–3952.
  • Mišković K, Bujak M, Baus Lončar M, et al. Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs. Arh Hig Rada Toksilkol. 2013;64:593–602.