740
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Dissipative Kawahara ion-acoustic solitary and cnoidal waves in a degenerate magnetorotating plasma

, , , ORCID Icon &
Article: 2187606 | Received 14 Oct 2021, Accepted 13 Feb 2023, Published online: 16 Mar 2023

References

  • Shapiro SL, Teukolsky SA, Holes B. White dwarfs and neutron stars: the physics of compact objects. New York: John Wiley and Sons; 1983.
  • Harwit M. Astrophysical concepts. New York: John Wiley and Sons; 1973, Chap. 8
  • Robinson MP, Tolra BL, Noel MW, et al. Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys Rev Lett. 2000;85:4466–4469.
  • Fletcher RS, Zhang XL, Rolston SL. Observation of collective modes of ultracold plasmas. Phys Rev Lett. 2006;96:105003.
  • Marklund M, Brodin G, Stenflo L, et al. Mechanical detection of carbon nanotube resonator vibrations. Phys Rev Lett. 2007;99:085501.
  • Marklund M, Shukla PK. Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev Mod Phys. 2006;78:591–640.
  • Haas F, Garcia LG, Goedert J, et al. Quantum ion-acoustic waves. Phys Plasmas. 2003;10:3858–3866.
  • Khana SA, Saleem H. Linear coupling of Alfven waves and acoustic-type modes in dense quantum magnetoplasmas. Phys Plasmas. 2009;16:052109.
  • Chandrashekhar S. Problems of stability in hydrodynamics and hydromagnetics: george darwin lecture, delivered by professor S. Chandrasekhar on 1953 Novemher 13. Mon Not R Astron Soc. 1953;113:667–678.
  • Lenhert B. Magnetohydrodynamic waves under the action of the coriolis force. Astrophys J. 1954;119:647.
  • Hide R. Free hydromagnetic oscillations of the earth's core and the theory of the geomagnetic secular variation. Philos Trans R Soc Lond Ser A. 1966;259:615.
  • El-Labany SK, Moslem WM, El-Awady EI. Nonlinear Langmuir structures: soliton and shock in a rotating weakly relativistic electron–positron magnetoplasma with stationary positive ions. Phys Plasmas. 2010;17:062304.
  • Tamang J, Abdikian A, Saha A. Phase plane analysis of small amplitude electron-acoustic supernonlinear and nonlinear waves in magnetized plasmas. Phys Scr. 2020;95:105604.
  • Abdikian A, Sultana S. Dust-acoustic solitary and cnoidal waves in a dense magnetized dusty plasma with temperature degenerate trapped electrons and nonthermal ions. Phys Scr. 2021;96:095602.
  • Abdikian A, Tamang J, Saha A. Supernonlinear wave and multistability in magneto-rotating plasma with (r,q) distributed electrons. Phys Scr. 2021;96:095605.
  • Abdikian A, Tamang J, Saha A. Investigation of supernonlinear and nonlinear ion-acoustic waves in a magnetized electron-ion plasma with generalized (r,q) distributed electrons. Waves Random Complex Med. 2021;1–22. DOI:10.1080/17455030.2021.1965242 .
  • Singh K, Sethi P, Sainic NS. Nonlinear excitations in a degenerate relativistic magneto-rotating quantum plasma. Phys Plasmas. 2019;26:092104.
  • Sahu B, Sinha A. Ion-acoustic waves in dense magneto-rotating quantum plasma. Phys Plasmas. 2019;26:072119.
  • Saini NS, Kaur M, Singh K. Heavy nucleus acoustic periodic waves in a degenerate relativistic magneto-rotating quantum plasma. Waves Random Complex Med. 2020;32:743–754. DOI:10.1080/17455030.2020.1798561.
  • Shukla PK, Eliasson B. Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev Mod Phys. 2011;83:885.
  • Rahman A, Khalid M, Naeem SN, et al. Periodic and localized structures in a degenerate Thomas–Fermi plasma. Phys Lett A. 2020;384:126257.
  • Korneev N, Apolinar Iribe A, Vysloukh VA, et al. Self-compression of 1+1D cnoidal wave in photorefractive BTO crystal: an experimental evidence. Opt Commun. 2001;197:209–215.
  • Pierson Jr. WJ, Donelan MA, Hui WH. Linear and nonlinear propagation of water wave groups. J Geophys Res. 1992;97:5607.
  • Rubenstein D. Observations of cnoidal internal waves and their effect on acoustic propagation in shallow water. IEEE J Ocean Eng. 1999;24:346–357.
  • Gurevich AV, Stenflo L. Nonlinear defocusing of radio wave beams in the ionosphere. Phys Scr. 1988;38:855–856.
  • Mahmood S, Haas F. Ion-acoustic cnoidal waves in a quantum plasma. Phys Plasmas. 2014;21:102308.
  • Farhadkiyaei F, Dorranian D. Nonlinear ion-acoustic cnoidal wave in electron–positron-ion plasma with nonextensive electrons. Contrib Plasma Phys. 2018;58:42–55.
  • Kaur N, Kaur R, Saini NS. Ion-acoustic cnoidal waves with the density effect of spin-up and spin-down degenerate electrons in a dense astrophysical plasma. Z Naturforsch A. 2019;75:103–111. DOI:10.1515/zna-2019-0140 .
  • Sethi P, Saini NS. Dust-acoustic cnoidal waves in a magnetized quantum dusty plasma. Waves Random Complex Med2021;31:1488–1504 . DOI:10.1080/17455030.2019.1679908 .
  • Masood W, Mirza AM, Nargis S, et al. Ion-acoustic vortices in inhomogeneous and dissipative electron–positron-ion quantum magnetoplasmas. Phys Plasmas. 2009;16:042308.
  • Pakzad HR. Quantum ion-acoustic shock waves in warm dissipative electron–positron–ion plasmas with relativistic ions. Can J Phys. 2011;89:961–965.
  • Ghosh S, Adak A, Khan M. Dissipative solitons in pair-ion plasmas. Phys Plasmas. 2014;21:012303.
  • Sahu B, Sinha A, Roychoudhury R. Weak dissipative ion-acoustic solitons in relativistically degenerate collisional plasma. Phys Plasmas. 2017;24:112111.
  • Farooq M, Mushtaq A, Qasim J. Dissipative ion acoustic solitary waves in collisional, magneto-rotating, non-thermal electron–positron–ion plasma. Contrib Plasma Phys. 2018;59:122–135.
  • Ghosh N, Sahu B. Nonlinear dispersive and dissipative electrostatic structures in two-dimensional electron–positron–ion quantum plasma. Commun Theor Phys. 2019;71:237.
  • Whitham GB. Linear and nonlinear waves. NY: Wiley Interscience Publcations, John Wiley and Sons; 1974.
  • Karpman VI. Nonlinear waves in dispersive media. Oxford: Pergamon Press; 1975.
  • Michallet H, Barthélemy E. Experimental study of interfacial solitary waves. J Fluid Mech. 1998;366:159–177.
  • Kahutani T, Ono H. Weak non-linear hydromagnetic waves in a cold collision-free plasma. J Phys Soc Japan. 1969;26:1305–1318.
  • Hasimoto H. Water waves. Kagaku. 1970;40:401–408.
  • Wazwaz A-M. Partial differential equations and solitary waves theory. Beijing, USA: Higher Education Press; 2009.
  • Wazwaz A-M. Partial differential equations: methods and applications. Lisse: Balkema, cop.; 2002.
  • Wazwaz A-M. Compacton solutions of the Kawahara-type nonlinear dispersive equation. Appl Math Comput. 2003;145:133.
  • Wazwaz A-M. New solitary wave solutions to the Kuramoto–Sivashinsky and the Kawahara equations. Appl Math Comput. 2006;182:1642–1650.
  • Khan Y. A new necessary condition of soliton solutions for Kawahara equation arising in physics. Optik. 2018;155:273–275.
  • El-Shewy EK, Zahran MA, Schoepf K, et al. Contribution of higher order dispersion to nonlinear dust-acoustic solitary waves in dusty plasma with different sized dust grains and nonthermal ions. Phys Scr. 2008;78:025501.
  • EL-Shamy EF, El-Shewy EK, Abdo NF. On the higher-order phase shift contributions in opposite polarities dust plasmas. Z Naturforsch. 2019;74:489–497.
  • Kashkari BS. Application of optimal homotopy asymptotic method for the approximate solution of Kawahara equation. Appl Math Sci. 2014;8:875–884.
  • Alharbey RA, Alrefae WR, Malaikah H, et al. Novel approximate analytical solutions to the nonplanar modified Kawahara equation and modeling nonlinear structures in electronegative plasmas. Symmery. 2023;15:97.
  • Ismaeel SME, Wazwaz A-M, Tag-Eldin E, et al. Simulation studies on the dissipative modified Kawahara solitons in a complex plasma. Symmetry. 2023;15:57.
  • Alyousef HA, Salas AH, Alharthi MR, et al. New periodic and localized traveling wave solutions to a Kawahara-type equation: applications to plasma physics. Complexity. 2022;2022:1–15.
  • Aljahdaly NF, El-Tantawy SA, Wazwaz A-M, et al. Novel solutions to the undamped and damped KdV–Burgers–Kuramoto equations and modeling the dissipative nonlinear structures in nonlinear media. Rom Rep Phys. 2022;74:102.
  • Aljahdaly NF, El-Tantawy SA. Novel anlytical solution to the damped Kawahara equation and its application for modeling the dissipative nonlinear structures in a fluid medium. J Ocean Eng Sci. 2021;7:492–497.
  • El-Tantawy SA, Salas AH, Alharthi MR. On the dissipative extended Kawahara solitons and cnoidal waves in a collisional plasma: Novel analytical and numerical solutions. Phys Fluids. 2021;33:106101.
  • El-Tantawy SA, H.Salas A, Alyouse HA, et al. Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma. Chin J Phys. 2022;77:2454–2471.
  • El-Tantawy SA, Salas AH, Alharthi MR. Novel analytical cnoidal and solitary wave solutions of the extended Kawahara equation. Chaos Solitons Fract. 2021;147:110965.
  • Lü X, Chen S-J. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 2021;103:947–977.
  • Lü X, Hua Y-F, Chen S-J, et al. Integrability characteristics of a novel (2 + 1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun Nonlinear Sci Numer Simul. 2021;95:105612.
  • He X-J, Lü X, Li M-G. Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Anal Math Phys. 2021;11:4.
  • Xu H-N, Ruan W-Y, Zhang Y, et al. Multi-exponential wave solutions to two extended Jimbo–Miwa equations and the resonance behavior. Appl Math Lett. 2020;99:105976.
  • Chen S-J, Lü X, Li M-G, et al. Derivation and simulation of the M-lump solutions to two (2 + 1)-dimensional nonlinear equations. Phys Scr. 2021;96:095201.
  • Sahu B. Nonplanar ion acoustic waves in collisional quantum plasma. Physica A. 2018;509:162–168.
  • Mushtaq A. Ion acoustic solitary waves in magneto-rotating plasmas. J Phys A. 2010;43:315501.
  • Landau LD, Lifshitz EM. Physical kinetics. UK: Permagon; 1981.
  • Landau LD, Lifshitz EM. Statistical physics, part 1. Oxford: Butterworth-Heinemann; 1980.
  • Landstreet J. Synchrotron radiation of neutrinos and its astrophysical significance. Phys Rev. 1967;153:1372–1377.
  • Lipunov VM. Neutron star astrophysics. Moscow: Nauka; 1987.
  • Shah HA, Qureshi MNS, Tsintsadze NL. Effect of trapping in degenerate quantum plasmas. Phys Plasmas. 2010;17:032312.
  • Shah HA, Masood W, Qureshi MNS, et al. Effects of trapping and finite temperature in a relativistic degenerate plasma. Phys Plasmas. 2011;18:102306.
  • Shah HA, Iqbal MJ, Tsintsadze N, et al. Effect of trapping in a degenerate plasma in the presence of a quantizing magnetic field. Phys Plasmas. 2012;19:092304.
  • Washimi H, Tanuiti T. Propagation of ion-acoustic solitary waves of small amplitude. Phys Rev Lett. 1966;17:996–998.
  • Mancas SC. Traveling wave solutions to Kawahara and related equations. Differ Equ Dyn Syst. 2019;27:19–37.
  • Koester D, Chanmugam G. Physics of white dwarf stars. Rep Prog Phys. 1990;53:837–915.
  • Brandão JE, Moraes F, Cunha MM, et al. Inertial-Hall effect: the influence of rotation on the Hall conductivity. Results Phys. 2015;5:55–59.
  • Malik HK, Singh S, Dahiya RP. Kadomtsev–Petviashvili solitons in inhomogeneous plasmas with finite temperature drifting ions. Phys Lett A. 1994;195:369–372.
  • Malik HK. Effect of electron inertia on KP solitons in a relativistic plasma. Physica D. 1999;125:295–301.