1,500
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Structure and electrochemical properties of CuO-ZnO nanocomposite produced by the one-step novel discharge process

ORCID Icon, , , &
Article: 2188017 | Received 13 Dec 2022, Accepted 03 Mar 2023, Published online: 22 Mar 2023

References

  • Gawande MB, Goswami A, Felpin F-X, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116:3722–3811. DOI:10.1021/acs.chemrev.5b00482
  • Oberdörster G, Maynard A, Donaldson K, et al. A report from the ILSI research foundation/risk science institute nanomaterial toxicity screening working group, principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8. DOI:10.1186/1743-8977-2-8
  • Nikoofar K, Haghighi M, Lashanizadegan M, et al. Zno nanorods: efficient and reusable catalysts for the synthesis of substituted imidazoles in water. J Taibah Univ Sci. 2015;9:570–578. DOI:10.1016/j.jtusci.2014.12.007
  • Ramya E, Rao MV, Jyothi L, et al. Photoluminescence and nonlinear optical properties of transition metal (Ag, Ni, Mn) doped ZnO nanoparticles. J Nanosci Nanotechnol. 2018;18:7072–7077. DOI:10.1166/jnn.2018.15521
  • Kumar R, Singh RK, Vaz AR, et al. Microwave-assisted synthesis and deposition of a thin ZnO layer on microwave-exfoliated graphene: optical and electrochemical evaluations. RSC Adv. 2015;5:67988–67995.DOI:10.1039/C5RA09936F
  • Bishwakarma H, Das AK. Synthesis of zinc oxide nanoparticles through hybrid machining process and their application in supercapacitors. J Elec Materi. 2020;49:1541–1549. DOI:10.1007/s11664-019-07835-x
  • Nagarani S, Sasikala G, Yuvaraj M, et al. ZnO-CuO nanoparticles enameled on reduced graphene nanosheets as electrode materials for supercapacitors applications. J Energy Storage. 2022;52:104969. DOI:10.1016/j.est.2022.104969
  • Purushothaman KK, Suba Priya V, Nagamuthu S, et al. Synthesising of ZnO nanopetals for supercapacitor applications. Micro Nano Lett. 2011;6:668. DOI:10.1049/mnl.2011.0260
  • Siva V, Murugan A, Shameem AS, et al. One-step hydrothermal synthesis of transition metal oxide electrode material for energy storage applications. J Mater Sci: Mater Electron. 2020;31:20472–20484. DOI:10.1007/s10854-020-04566-2
  • Wu F, Wang X, Hu S, et al. Solid-state preparation of CuO/ZnO nanocomposites for functional supercapacitor electrodes and photocatalysts with enhanced photocatalytic properties. Int J Hydrogen Energy. 2017;42:30098–30108. DOI:10.1016/j.ijhydene.2017.10.064
  • Suganthi N, Thangavel S, Pushpanathan K. Infra-red emission and electrochemical properties of CuO/ZnO nanocubes. J Inorg Organomet Polym. 2020;30:5224–5233. DOI:10.1007/s10904-020-01700-9
  • Kumar R, Youssry SM, Joanni E, et al. Microwave-assisted synthesis of iron oxide homogeneously dispersed on reduced graphene oxide for high-performance supercapacitor electrodes. J Eng Storage. 2022;56:105896. DOI:10.1016/j.est.2022.105896
  • Kandhasamy N, Ramalingam G, Murugadoss G, et al. Copper and zinc oxide anchored silica microsphere: a superior pseudocapacitive positive electrode for aqueous supercapacitor applications. J Alloys Compd. 2021;888:161489. DOI:10.1016/j.jallcom.2021.161489
  • Kumar R, Pérez Del Pino A, Sahoo S, et al. Laser processing of graphene and related materials for energy storage: state of the art and future prospects. Prog Energy Combust Sci. 2022;91:100981. DOI:10.1016/j.pecs.2021.100981
  • Akhtar M, Rafiq S, Warsi MF, et al. Hierarchically porous NiO microspheres and their nanocomposites with exfoliated carbon as electrode materials for supercapacitor applications. J Taibah Univ Sci. 2022;16:575–584. DOI:10.1080/16583655.2022.2083361
  • Bazazi S, Arsalani N, Khataee A, et al. Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance. J Ind Eng Chem. 2018;62:265–272. DOI:10.1016/j.jiec.2018.01.004
  • Parashar M, Shukla VK, Singh R. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci: Mater Electron. 2020;31:3729–3749. DOI:10.1007/s10854-020-02994-8
  • Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2:1821–1871. DOI:10.1039/D0MA00807A
  • Joanni E, Kumar R, Fernandes WP, et al. In situ growth of laser-induced graphene micro-patterns on arbitrary substrates. Nanoscale. 2022;14:8914–8918. DOI:10.1039/D2NR01948E
  • Abid N, Khan AM, Shujait S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface Sci. 2022;300:102597. DOI:10.1016/j.cis.2021.102597
  • Rafique M, Sadaf I, Rafique MS, et al. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017;45:1272–1291. DOI:10.1080/21691401.2016.1241792
  • Bishwakarma H, Tyagi R, Kumar N, et al. Green synthesis of flower shape ZnO-GO nanocomposite through optimized discharge parameter and its efficiency in energy storage device. Environ Res. 2023;218:115021. DOI:10.1016/j.envres.2022.115021
  • Allagui A, Baranova EA, Wüthrich R. Synthesis of Ni and Pt nanomaterials by cathodic contact glow discharge electrolysis in acidic and alkaline media. Electrochim Acta. 2013;93:137–142. DOI:10.1016/j.electacta.2012.12.057
  • Li CJ, Cao X, Li WH, et al. Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. J Alloys Compd. 2019;773:762–769. DOI:10.1016/j.jallcom.2018.09.250
  • Kumar R, Joanni E, Sahoo S, et al. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon N Y. 2022;193:298–338. DOI:10.1016/j.carbon.2022.03.023
  • Tiwari JN, Tiwari RN, Kima KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57:724–803.
  • Kumar N, Mandal N, Das AK. Micro-machining through electrochemical discharge processes: a review. Mater Manuf Processes. 2020;35:363–404. DOI:10.1080/10426914.2020.1711922
  • Kim S-M, Cho A-R, Lee S-Y. Characterization and electrocatalytic activity of Pt–M (M = Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water. J Nanopart Res. 2015;17:284. DOI:10.1007/s11051-015-3096-0
  • Khlyustova A, Sirotkin N, Kraev A, et al. Parameters of underwater plasma as a factor determining the structure of oxides (Al, Cu, and Fe). Materialia. 2021;16:101081. DOI:10.1016/j.mtla.2021.101081.
  • Tseng K-H, Chang C-Y, Chung M-Y, et al. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure. Nanotechnology. 2017;28:465701. DOI:10.1088/1361-6528/aa8da9
  • Habibi MH, Karimi B. Application of impregnation combustion method for fabrication of nanostructure CuO/ZnO composite oxide: XRD, FESEM, DRS and FTIR study. J Ind Eng Chem. 2014;20:1566–1570. DOI:10.1016/j.jiec.2013.07.048
  • Qamar MT, Aslam M, Ismail IMI, et al. And sunlight mediated photocatalytic activity of CuO coated ZnO for the removal of nitrophenols. ACS Appl Mater Interfaces . 2015;7:8757–8769. DOI:10.1021/acsami.5b01273
  • Harish S, Archana J, Sabarinathan M, et al. Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutant. Appl Surf Sci. 2017;418:103–112. DOI:10.1016/j.apsusc.2016.12.082
  • Maurya CI, Gupta T, Shankar S, et al. Dielectric and impedance studies of binary ZnO–CuO nanocomposites for hydroelectric cell application. Mater Chem Phys. 2022;291:126690. DOI:10.1016/j.matchemphys.2022.126690
  • Bulakhe RN, Sahoo S, Nguyen TT, et al. Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application. RSC Adv. 2016;6:14844–14851. DOI:10.1039/C5RA25568F
  • Maity CK, Hatui G, Sahoo S, et al. Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. Chem Select. 2019;4:3672–3680. DOI:10.1002/slct.201803560
  • Maity CK, De S, Acharya S, et al. Copper oxide stabilized oxy-functionalized boron nitride-carbon nanotube nanohybrid: an ultra-stable electrode for flexible asymmetric supercapacitor device in ionic electrolyte. J Eng Storage. 2022;56:105928. DOI:10.1016/j.est.2022.105928
  • Liu Y-Z, Li Y-F, Yang Y-G, et al. A one-pot method for producing ZnO–graphene nanocomposites from graphene oxide for supercapacitors. Scr Mater. 2013;68:301–304. DOI:10.1016/j.scriptamat.2012.10.048
  • Fuku X, Kaviyarasu K, Matinise N, et al. Punicalagin green functionalized Cu/Cu2O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res Lett. 2016;11:386. DOI:10.1186/s11671-016-1581-8