989
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of genetic diversity among Saudi Arabian and Egyptian cultivars of alfalfa (Medicago sativa L.) using ISSR and SCoT markers

ORCID Icon, , , , &
Article: 2194187 | Received 03 Oct 2020, Accepted 03 Feb 2023, Published online: 05 Apr 2023

References

  • Sayed MRI, Alshallash KS, Safhi FA, et al. Genetic diversity, analysis of some agro-morphological and quality traits and utilization of plant resources of alfalfa. Genes. 2022;13:1521. DOI:10.3390/genes13091521.
  • Putnam D, Ruselle M, Orloff S, et al. Alfalfa wildlife and the environment. The importance and benefits of alfalfa in the 21st century. Novato (CA): The California Alfalfa and Forage Association; 2001: 24 pp.
  • Kulkarni K, Tayade R, Asekova S, et al. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front Plant Sci. 2018;9:1314. DOI:10.3389/fpls.2018.01314.
  • Singer SD, Hannoufa A, Acharya S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. Plant Cell Environ. 2018;41:1955–1971.
  • Lei Y, Hannoufa A, Yu P. The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. Int J Mol Sci 2017;18(2):298. DOI:10.3390/ijms18020298.
  • Stanford EH. Tetrasomic inheritance in alfalfa. Agron J. 1951;43:222–225.
  • Willis JH. Inbreeding load, average dominance and the mutation rate for mildly deleterious alleles in Mimulus guttatus. Genetics. 1999;153:1885–1898.
  • Julier B, Flajoulot S, Barre P, et al. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 2003;19:3–9. DOI:10.1186/1471-2229-3-9.
  • Goodman RM. Encyclopedia of plant and crop science. New York: CRC Press; 2004.
  • Flajoulot S, Ronfort J, Baudouin P, et al. Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor Appl Genet. 2005;111(7):1420–1429. DOI:10.1007/s00122-005-0074-4.
  • https://www.prnewswire.com/news-releases/global-alfalfa-hay-market-2018-2023-saudi-arabia-imports-is-projected-to-grow-at-a-maximum-rate-due-to-the-countrys-banning-of-forage-crops-production-in-2019-300746502.html [cited 30 Oct 2022].
  • https://www.mordorintelligence.com/industry-reports/saudi-arabia-alfalfa-market [cited 30 Oct 2022].
  • Alla WH, Bakheit BR, Abo-Elwafa A, et al. Evaluate of some varieties of alfalfa for forage yield and its components under the new valley conditions. J Agroalim Process Technol. 2014;19(4):413–418.
  • CAPMAS. Central agency for public mobilization and statistics. Annual Bulletin of Statistical Crop Area and Plant Production, Egypt, 1 September 2019, Issue 71-22122-2017.
  • Jungers J, Cherney J, Martinson K, et al. Forage nutritive value of modern alfalfa cultivars. Crop Forage Turfgrass Manag. 2020;6(1):e20076. DOI:10.1002/cft2.20076.
  • Ball DM, Collins M, Lacefield GD, et al. Understanding forage quality; 2001: 1–21. https://pss.uvm.edu/pdpforage/Materials/ForageQuality/Understanding_Forage_Quality_Ball.pdf.
  • Flores-Mar J, Zinn RA, Salinas-Chavira J. Influence of forage NDF level and source in growing–finishing diets on growth performance of feedlot lambs. Acta Agric Scand A Anim Sci. 2017;67:134–138.
  • Hatfield RD, Ralph J, Grabber JH. Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric. 1999;79:403–407.
  • Hatfield RD, Jung H-JG, Ralph J, et al. A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric. 1994;65:51–58.
  • Seiam MA, Mohamed ES. Forage yield, quality characters and genetic variability of some promising Egyptian clover populations. Egypt J Plant Breed. 2020;24:839–858.
  • Jenczewski E, Prosperi JM, Ronfort J. Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot. 1999;86(5):677–687. DOI:10.2307/2656577.
  • Guines F, Julier B, Ecalle C, et al. Among and within-cultivar variability for histological traits of lucerne (Medicago sativa L.) stem. Euphytica. 2003;130(2):293–301. DOI:10.1023/A:1022885320517.
  • Benabderrahim MA, Mansour H, Ali F. Diversity of Lucerne (Medicago Sativa L.) populations in South Tunisia. Pak J Bot. 2009;41(6):2851–2861. pakbs.org/pjbot/PDFs/41(6)/PJB41(6)2851.pdf.
  • Touil L, Bao A, Wang S, et al. Genetic diversity of Tunisian and Chinese alfalfa (Medicago Sativa L.) revealed by RAPD and ISSR markers. Am J Plant Sci. 2016;7(6):967–979. DOI:10.4236/ajps.2016.76092.
  • Alsamman AM, Ibrahim SD, Hamwieh A. KASPspoon: an in vitro and in silico PCR analysis tool for high-throughput SNP genotyping. Bioinformatics. 2019;35(17):3187–3190. DOI:10.1093/bioinformatics/btz004.
  • Brejea R, Rosca S, Taut FD, et al. Quantitative GIS model for evaluating the favorability of alfalfa (Medicago sativa L.) culture for suitable varieties in Romania. Appl Sci. 2021;11:4205.
  • Qiang H, Chen Z, Zhang Z, et al. Molecular diversity and population structure of a worldwide collection of cultivated tetraploid alfalfa (Medicago sativa subsp. sativa L.) germplasm as revealed by microsatellite markers. PLoS One. 2015;10:24–339.
  • Xavier A. Efficient estimation of marker effects in plant breeding. G3. 2019;9(11):3855–3866. DOI:10.1534/g3.119.400728.
  • Alsamman AM, Adawy SS, Ibrahim SD, et al. Selective amplification of start codon polymorphic loci (SASPL): a new pcr-based molecular marker in Olive. Plant Omics. 2017;10(2):64. DOI:10.21475/poj.10.02.17.pne385.
  • Seçgin Z, Yunus Emre Arvas YE, Ssendawula SP, et al. Selection of root-knot nematode resistance in inbred tomato lines using CAPS molecular markers. Int J Life Sci Biotechnol. 2018;1(1):10–16. DOI:10.38001/ijlsb.427056.
  • Pupilli F, Businelli S, Paolocci F, et al. Extent of RFLP variability in tetraploid populations of alfalfa, Medicago Sativa. Plant Breed. 1996;115(2):106–112. DOI:10.1111/j.1439-0523.1996.tb00883.
  • Mengoni A, Gori A, Bazzicalupo M. Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago Sativa. Plant Breed. 2000;119(4):311–317. DOI:10.1046/j.1439-0523.2000.00501.x.
  • Zaccardelli M, Gnocchi S, Carelli M, et al. Variation among and within Italian alfalfa ecotypes by means of bio-agronomic haracters and amplified fragment length polymorphism analyses. Plant Breed. 2003;122(1):61–65. DOI:10.1046/j.1439-0523.2003.00750.
  • Vandemark GJ, Hughes TJ, Larsen RC. Genetic similarities between alfalfa cultivars based on sequence related amplified polymorphism (SRAP) DNA markers. Plant & Animal Genomes XIII Conference. 2005; San Diego, CA.
  • Collard BCY, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;27(1):86. DOI:10.1007/s11105-008-0060-5.
  • Faqian X, Zhong R, Han Z, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep. 2011;38(5):3487–3494. DOI:10.1007/s11033-010-0459-6.
  • Pakseresht F, Talebi R, Karami E. Comparative assessment of ISSR, DAMD and SCoT markers for evaluation of genetic diversity and conservation of landrace chickpea (Cicer arietinum L.) genotypes collected from north-west of Iran. Physiol Mol Biol Plants. 2013;19(4):563–574. DOI:10.1007/s12298-013-0181-7.
  • Tikendra L, Potshangbam AM, Dey A, et al. RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.- an important endangered orchid. Physiol Mol Biol Plants. 2021;27(2):341–357. DOI:10.1007/s12298-021-00939-x.
  • Nouri A, Golabadi M, Etminan A, et al. Comparative assessment of SCoT and ISSR markers for analysis of genetic diversity and population structure in some Aegilops tauschii Coss. accessions. Plant Genet Resour. 2021;19(5):375–383. DOI:10.1017/S147926212100040X.
  • Alotaibi MO, Abd-Elgawad ME. ISSR and SCoT for evaluation of hereditary differences of 29 wild plants in Al Jubail Saudi Arabian. Saudi J Biol Sci. 2022;29(5):3223–3231.
  • Igwe DO, Ihearahu OC, Osano AA, et al. Assessment of genetic diversity of Musa species accessions with variable genomes using ISSR and SCoT markers. Genet Resour Crop Evol. 2022;69:49–70. DOI:10.1007/s10722-021-01202-8.
  • Thompson JD, Gibson TJ, Higgins DG. Multiple equences alignment using ClustalW and ClustalX. Curr Protoc Bioinform. 2002. DOI:10.1002/0471250953.bi0203s00.
  • Khodaee L, Azizinezhad R, Etminan AR, et al. Assessment of genetic diversity among Iranian Aegilops triuncialis accessions using ISSR, SCoT, and CBDP markers. J Genet Eng Biotechnol. 2021;19(1):1–9.
  • Gogoi B, Wann SB, Saikia SP. Comparative assessment of ISSR, RAPD, and SCoT markers for genetic diversity in Clerodendrum species of North East India. Mol Bio Rep. 2020;47(10):7365–7377. DOI:10.1007/s11033-020-05792-x.
  • Cieplak M, Okoń S, Werwińska K. Genetic similarity of Avena sativa L. varieties as an example of a narrow genetic pool of contemporary cereal species. Plants. 2021;10(7):1424. DOI:10.3390/plants10071424.
  • Øyvind H, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):9. https://palaeo-electronica.org/2001_1/past/past.pdf.
  • Pritchard JK, Wen W, Falush D. Documentation for structure software: Version 2. 2003.
  • Liu K, Muse SV. Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128–2129. DOI:10.1093/bioinformatics/bti282.
  • Donna M, Ostell J, Pruitt KD, et al. Entrez gene: gene-centered information at NCBI. Nucleic Acids Res. 2011;39(Database Issue):D52–D57. DOI:10.1093/nar/gkl993.
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics. 2006;23(1):127–128.
  • Stucky BJ. Seqtrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomol Tech. 2012;23(3):90–93. DOI:10.7171/jbt.12-2303-004.
  • Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20:176–183.
  • Goodwin ID, Aitken EAB, Smith LW. Application of Inter Simple Sequence Repeat (ISSR) markers to plant genetics. Electrophoresis. 1997;18:1524–1528.
  • Nel S, Davis SB, Endo A, et al. Phylogenetic analyses of PheS, DnaA and AtpA genes for identification of Weissella confusa and Weissella cibaria isolated from a South African sugarcane processing factory. Curr Microbiol. 2019;76(10):1138–1146. DOI:10.1007/s00284-019-01740-6.
  • Maryam R, Farshadfar M, Safari H, et al. Utility of ISSR molecule marker in examine of genetic diversity 17 genotypes of perennial alfalfa (Medicago Sativa). J Nov Appl Sci. 2013;2:969–973.
  • Amom T, Tikendra L, Apana N, et al. Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry. 2020;174:112330. DOI:10.1016/j.phytochem.2020.112330.
  • Parthiban S, Govindaraj P, Senthilkumar S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. 3 Biotech. 2018;8(3):1–2. DOI:10.1007/s13205-018-1172-8.
  • Sorina P, Boldura OM, Ciulca S, et al. Evaluation of the genetic variability correlated with multileaflet trait in Alfalfa. Agro Life Sci J. 2016;5(2):125–130.
  • Mulpuri S, Muddanuru T, Francis G. Start codon targeted (SCoT) polymorphism in toxic and non-toxic accessions of Jatropha curcas L. and development of a codominant SCAR marker. Plant Sci. 2013;207:117–127.
  • Gajera HP, Bambharolia RP, Domadiya RK, et al. Molecular characterization and genetic variability studies associated with fruit quality of indigenous Mango (Mangifera indica L.) Cultivars. Plant Syst Evol. 2014;300(5):1011–1020. DOI:10.1007/s00606-013-0939-y.
  • Faqian X, Zhong R, Han Z, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep. 2011;38(5):3487–3494. DOI:10.1007/s11033-010-0459-6.
  • Vivodík M, Balážová Z, Gálová Z, et al. Genetic diversity analysis of Maize (Zea mays L.) using SCoT markers. J Microbiol Biotechnol Food Sci. 2017;6(5):1170–1173. DOI:10.15414/jmbfs.2017.6.5.1170-1173.
  • Thakur J, Dwivedi MD, Singh N, et al. Applicability of Start Codon Targeted (SCoT) and Inter Simple Sequence Repeat (ISSR) markers in assessing genetic diversity in Crepidium acuminatum (D. Don) Szlach. J App Res Med Aromat Plants. 2021;23:100310. DOI:10.1016/j.jarmap.2020.100256.
  • Ghobadi G, Etminan A, Mehrabi AM, et al. Molecular diversity analysis in hexaploid wheat (Triticum aestivum L.) and two Aegilops species (Aegilops crassa and Aegilops cylindrica) using CBDP and SCoT markers. J Genet Eng Biotechnol. 2021;19(1):1–11. DOI:10.1186/s43141-021-00157-8.
  • Tyagi R, Sharma V, Sureja AK, et al. Genetic diversity and population structure detection in sponge gourd (Luffa cylindrica) using ISSR, SCoT and morphological markers. Physiol Mol Bio Plants. 2020;26(1):119–131. DOI:10.1007/s12298-019-00723-y.
  • Lou W, Tan X, Song K, et al. A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942. Appl Environ Microbiol. 2018;84(18):e01222–18.
  • Silva SR, Diaz YCA, Penha HA, et al. The chloroplast genome of Utricularia reniformis sheds light on the evolution of the Ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS One. 2016;11(10):e0165176. DOI:10.1371/journal.pone.0165176.
  • Regel RE, Ivleva NB, Zer H, et al. Deregulation of electron flow within photosystem II in the absence of the PsbJ protein. J Biol Chem. 2001;276(44):41473–41478. DOI:10.1074/jbc.M102007200.