460
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of compressive and rarefactive lump solitons structures in dusty plasma with double spectral (r,q) distributed electrons

ORCID Icon
Article: 2194461 | Received 13 May 2022, Accepted 15 Mar 2023, Published online: 30 Mar 2023

References

  • Chen F. Introduction to plasma physics and controlled fusion. Newyork and London: Plenum Press; 1984.
  • Mamum AA, Shukla PK. Introduction to dust charge fluctuation. Cambridge: Cambridge University Press; 2002.
  • Ghosh UN. Variable dust charge generates a special type of nonlinear structure through modified Gardner equations. Contrib Plasma Phys. 2022;62:Article ID e202100154.
  • Allehiany FM, Fares MM, Abdelsalam UM, et al. Solitary and shock like wave solutions for the Gardner equation in dusty plasmas. J Taibah Univ Sci. 2020;14(1):800–806.
  • Ghosh UN, Roy K, Chatterjee P. Head-on collision of dust acoustic solitary waves in four component dusty plasmas with nonthermal ions. Phys Plasmas. 2011;18:Article ID 103703.
  • Ghosh UN, Chatterjee P, Kundu SK. The effect of q-distributed ions during the head-on collision of dust acoustic solitary waves. Astrophys Space Sci. 2012;339(2):255–260.
  • Sharma P, Das A. Dynamical properties of dust-ion-acoustic wave solutions in a nonextensive collisional dusty plasma. J Taibah Univ Sci. 2021;15(1):710–720.
  • Ghosh UN, Chatterjee P, Tribeche M. Interaction of dust-ion acoustic solitary waves in nonplanar geometry with electrons featuring Tsallis distribution. Phys Plasmas. 2012;19:Article ID 112302.
  • Malik HK, Srivastava R, Kumar S, et al. Small amplitude dust acoustic solitary wave in magnetized two ion temperature plasma. J Taibah Univ Sci. 2020;14(1):417–422.
  • Pradhan B, Abdikian A, Saha A. Nonlinear and supernonlinear ion-acoustic wave phenomena in an electron-positron-pair-ion quantum plasma. Waves Random Complex Media. 2022. DOI:10.1080/17455030.2022.2070796
  • Abdikian A, Farahani SV. The characteristics of ion-acoustic solitary waves in relativistic rotating astrophysical plasmas. Eur Phys J Plus. 2022;137(6):652.
  • Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J Math Phys. 1973;14(7):810–814.
  • Hirota R, Ito M. Resonance of solitons in one dimension. J Phys Soc Jpn. 1983;52(3):744–748.
  • Hirota R, Satsuma J. Soliton solutions of a coupled Korteweg–de Vries equation. Phys Lett A. 1981;85(8–9):407–408.
  • Kadomtsev BB, Petviashvili VI. On the stability of solitary waves in weakly dispersing media. Sov Phys Dokl. 1970;15:539.
  • Malik HK. Effect of electron inertia on KP solitons in a relativistic plasma. Phys D: Nonlinear Phenom. 1999;125(3–4):295–301.
  • Kumar R, Malik HK. Nonlinear solitary structures in an inhomogeneous magnetized plasma having trapped electrons and dust particles with different polarity. J Phys Soc Jpn. 2011;80(4):044502.Article ID 044502.
  • Mushtaq A, Qamar A. Parametric studies of nonlinear magnetosonic waves in two-dimensional quantum magnetoplasmas. Phys Plasmas. 2009;16:Article ID 022301.
  • Masood W, Hussain S, Rizvi H, et al. Electromagnetic solitary structures in dense electron-positron-ion magnetoplasmas. Phys Scr. 2010;82:Article ID 065508.
  • Abdikian A, Sultana S. Dust-acoustic solitary and cnoidal waves in a dense magnetized dusty plasma with temperature degenerate trapped electrons and nonthermal ions. Phys Scr. 2021;96:Article ID 095602.
  • Abdikian A, Tamang J, Saha A. Supernonlinear wave and multistability in magneto-rotating plasma with (r,q) distributed electrons. Phys Scr. 2021;96:Article ID 095605.
  • Abdikian A, Tamang J, Saha A. Investigation of supernonlinear and nonlinear ion-acoustic waves in a magnetized electron-ion plasma with generalized (r,q) distributed electrons. Waves Random Complex Media. 2021. DOI:10.1080/17455030.2021.1965242
  • Ma WX, Qin Z, Lü X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 2016;84(2):923–931.
  • Lü X, Ma WX. Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 2016;85(2):1217–1222.
  • Ma WX. Lump solutions to the Kadomtsev–Petviashvili equation. Phys Lett A. 2015;379(36):1975–1978.
  • Tang Y, Tao S, Guan Q. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput Math Appl. 2016;72(9):2334–2342.
  • Ghosh UN, Nasipuri S, Chatterjee P. Study of lump soliton structures in quantum electron-positron-ion magnetoplasma. Contrib Plasma Phys. 2022;62:Article ID e202200094.
  • Ghosh UN. Superthermal electron's effects on lump solitons structures in magnetized auroral plasma. Adv Space Res. 2023;71(1):244–254.
  • Ghosh UN, Chatterjee P, Kaur B. Study of lump soliton structures in pair-ion plasmas. Braz J Phys. 2023;53(2):48.
  • Zhao Q, Liu J, Yang H, et al. Double U-groove temperature and refractive index photonic crystal fiber sensor based on surface plasmon resonance. Appl Opt. 2022;61(24):7225.
  • Liu XL, Liu J, Yang HM, et al. Design of a high-performance graphene/SiO 2-Ag periodic grating/MoS 2 surface plasmon resonance sensor. Appl Opt. 2022;61(23):6752. DOI:10.1364/AO.465640
  • Li X, Dong ZQ, Wang LP, et al. A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows. Appl Math Model. 2023;117:219–250. DOI:10.1016/j.apm.2022.12.025
  • Liu S, Liu C. Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans Ind Electron. 2021;68(3):2048–2058. DOI:10.1109/TIE.2020.2973905
  • Liu S, Liu C. Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans Power Electron. 2021;36(10):11647–11657. DOI:10.1109/TPEL.2021.3069862
  • Liu S, Liu C, Zhao H, et al. Improved flux weakening control strategy for five-phase PMSM considering harmonic voltage vectors. IEEE Trans Power Electron. 2022;37(9):10967–10980. DOI:10.1109/TPEL.2022.3164047
  • Liu J, MAO S, Song S, et al. Towards applicable photoacoustic micro-fluidic pumps: tunable excitation wavelength and improved stability by fabrication of ag-Au alloying nanoparticles. J Alloys Compd. 2021;884. DOI:10.1016/j.jallcom.2021.161091
  • Kong L, Liu G. Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter Radiat Extremes. 2021;6(6):068202. DOI:10.1063/5.0071856
  • Fateh Bouchaala F, Ali MY, Matsushima J, et al. Estimation of seismic wave attenuation from 3D seismic data: a case study of OBC data acquired in an offshore oilfield. Energies. 2022;15(2):534.
  • Matsushima J, Ali MY, Bouchaala F. Propagation of waves with a wide range of frequencies in digital core samples and dynamic strain anomaly detection: carbonate rock as a case study. Geophys J Int. 2021;224(1):340–354.
  • Abid AA, Khan MZ, Lu Q, et al. A generalized AZ-non-Maxwellian velocity distribution function for space plasmas. Phys Plasmas. 2017;24:Article ID 033702.
  • Qureshi MN, Shi JK, Ma SZ. Landau damping in space plasmas with generalized (r,q) distribution function. Phys Plasmas. 2005;12(12):122902. Article ID 122902.
  • Lin RP, Larson DE, Ergun RE, et al. Observations of the solar wind, the bow shock and upstream particles with the wind 3D plasma instrument. Adv Space Res. 1997;20(4–5):645–654.
  • Qureshi MN, Pallocchia G, Bruno R, et al. Solar wind particle distribution function fitted via the generalized kappa distribution function Cluster observations. In: AIP Conference Proceedings; 2003 Sep 2; Vol. 679, No. 1. American Institute of Physics. p. 489-492.
  • Zaheer S, Murtaza G, Shah HA. Some electrostatic modes based on non-Maxwellian distribution functions. Phys Plasmas. 2004;11(5):2246–2255.
  • Aljahdaly NH, El-Tantawy SA, Wazwaz AM, et al. Adomian decomposition method for modelling the dissipative higher-order rogue waves in a superthermal collisional plasma. J Taibah Univ Sci. 2021;15(1):971–983.
  • Abdo NF. Effect of non-Maxwellian distribution on the dressed electrostatic wave and energy properties. J Taibah Univ Sci. 2017;11(4):617–622.
  • Ghosh UN. Singular solitons interaction of dust ion acoustic waves in the framework of Korteweg de Vries and modified Korteweg-de Vries equations with (r,q) distributed electrons. Contrib Plasma Phys. 2022;62:Article ID e202100245.
  • El-Labany SK, El-Taibany WF, El-Tantawy AA, et al. Effects of double spectral electron distribution and polarization force on dust acoustic waves in a negative dusty plasma. Contrib Plasma Phys. 2020;60:Article ID e202000049.