1,370
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomass production and biochemical composition of Chlorella vulgaris grown in Net-House Photobioreactor (NHPBR) using sugarcane press mud waste

, , ORCID Icon & ORCID Icon
Article: 2194843 | Received 12 May 2022, Accepted 21 Mar 2023, Published online: 30 Mar 2023

References

  • Almutairi AW. Full utilization of marine microalgal hydrothermal liquefaction liquid products through a closed-loop route: towards enhanced bio-oil production and zero-waste approach. 3 Biotech. 2022;12(9):209.
  • Bilanovic D, Andargatchew A, Kroeger T, et al. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Convers Manage. 2009;50(2):262–267.
  • Hirata K, Phunchindawan M, Tukamoto J, et al. Cryopreservation of microalgae using encapsulation-dehydration. Cryo Lett. 1996;17:321–328.
  • Jacob-Lopes E, Cacia Ferreira Lacerda LM, Franco TT. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem Eng J. 2008;40(1):27–34.
  • de Morais MG, Costa JAV. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett. 2007;29(9):1349–1352.
  • Mountourakis F, Papazi A, Kotzabasis K. The microalga Chlorella vulgaris as a natural bioenergetic system for effective CO2 mitigation—new perspectives against global warming. Symmetry (Basel). 2021;13(6):997), doi:10.3390/sym13060997.
  • Sydney E, Da Silva T, Tokarski A, et al. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy. 2011;88(10):3291–3294.
  • Chiu S-Y, Kao C-Y, Chen C-H, et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol. 2008;99(9):3389–3396.
  • Krishnan V, Uemura Y, Suzana Y, et al. Aspects of carbon dioxide mitigation by Nannochloropsis oculata cultured in a photobioreactor. Appl Mech Mater. 2014;625:12.
  • Chiu S-Y, Kao C-Y, Tsai M-T, et al. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol. 2009;100(2):833–838.
  • Han SF, Jin W, Tu R, et al. Optimization of aeration for biodiesel production by scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng. 2016;39(7):1073–1079.
  • Kamyab H, Md Din MF, Lee CT, et al. Lipid production by microalgae Chlorella pyrenoidosa cultivated in palm oil mill effluent (POME) using hybrid photo bioreactor (HPBR). Desalin Water Treat. 2015;55(13):3737–3749.
  • Zhang S, Liu Z. Advances in the biological fixation of carbon dioxide by microalgae. J Chem Technol Biotechnol. 2021;96(6):1475–1495.
  • Almutairi AW, Al-Hasawi ZM, Abomohra AE-F. Valorization of lipidic food waste for enhanced biodiesel recovery through two-step conversion: a novel microalgae-integrated approach. Bioresour Technol. 2021;342:125966.
  • Silva T, Moniz P, Silva C, et al. The role of heterotrophic microalgae in waste conversion to biofuels and bioproducts. Processes. 2021;9(7):1090.
  • Eriksen NT. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol. 2008;80(1):1–14.
  • Chen G-Q, Chen F. Growing phototrophic cells without light. Biotechnol Lett. 2006;28(9):607–616.
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008 Mar;26(3):126–131.
  • El S, Battah M, Wehedy. Utilization efficiency of artificial carbon dioxide and corn steam liquor by chlorella vulgaris. Biolife Journal. 2015.
  • El-Sayed A, El-Sheekh M. Outdoor cultivation of Spirulina platensis for mass production. Notulae Scientia Biologicae. 2018;10:38.
  • Stanier RY, Kunisawa R, Mandel M, et al. Purification and properties of unicellular blue-green algae (order chroococcales). Bacteriol Rev. 1971;35(2):171–205.
  • Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 1979;57(12):1332–1334.
  • Ma T, Zuazaga G. Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Indus Eng Chem Anal Ed. 1942;14(3):280–282.
  • Rosni S, Ahmad F, Awang A, et al. Crude proteins, total soluble proteins, total phenolic contents and SDS-PAGE profile of fifteen varieties of seaweed from Semporna, Sabah, Malaysia. Int Food Res J. 2015;22:1483–1493.
  • Cornwell DG. Techniques in protein chemistry (Bailey, J. Leggett). J Chem Educ. 1964;41(6):352.
  • DuBois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428.
  • Liu J, Huang J, Sun Z, et al. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol. 2011;102:106–110.
  • Chapman HD, Pratt PF. Methods of analysis for soils, plants and waters. Soil Sci. 1962;93(1.
  • Davis R, Aden A, Pienkos PT. Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy. 2011;88(10):3524–3531.
  • El-Fouly MM, Abdalla FE, El-Sayed AB. Modified open plate system for open door production of algal biomass. Egyptian Journal of Phycology. 2001;2(1):1–7.
  • Yun J-H, Smith VH, Pate RC. Managing nutrients and system operations for biofuel production from freshwater macroalgae. Algal Res. 2015;11:13–21.
  • Egbo M, Okoani A, Okoh I. Photobioreactors for microalgae cultivation–an overview. Int J Sci Eng Res. 2018;9:65–74.
  • El-Sayed A. Carotenoids accumulation in the green alga Scenedesmus sp. incubated with industrial citrate waste and different induction stresses. Nat Sci. 2010;8(10):34–40.
  • Ogawa T, Aiba S. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng. 1981;23(5):1121–1132.
  • Xie J, Zhang Y, Li Y, et al. Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol. 2001;13(4):343–347.
  • Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14(2):557–577.
  • Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 2006;97(6):841–846.
  • Cupo A, Landi S, Morra S, et al. Autotrophic vs. heterotrophic cultivation of the marine diatom cyclotella cryptica for EPA production. Mar Drugs. 2021;19(7):355.
  • Andrade MR, Costa JA. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture. 2007;264(1-4):130–134.
  • Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996;14(11):421–426.
  • Zhang X-W, Zhang Y-M, Chen F. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem. 1999;34(5):477–481.
  • Bashir KMI, Mansoor S, Kim N-R, et al. Effect of organic carbon sources and environmental factors on cell growth and lipid content of Pavlova lutheri. Ann Microbiol. 2019;69(4):353–368.
  • Li L, Huang J, Almutairi AW, et al. Integrated approach for enhanced bio-oil recovery from disposed face masks through co-hydrothermal liquefaction with Spirulina platensis grown in wastewater. Biomass Conversion and Biorefinery. 2021;09:25.
  • Figler A, Márton K, B-Béres V, et al. Effects of nutrient content and nitrogen to phosphorous ratio on the growth, nutrient removal and desalination properties of the green alga Coelastrum morus on a laboratory scale. Energies. 2021;14(8):2112.
  • El-Sayed A. Physiological studies on some fresh water green algae: PhD Thesis. Faculty of Agriculture, Cairo University; 1999.
  • Pugazh G, Thiyagu R, Sivarajan P. Physico-chemical characterization of raw and diluted effluent from distillery industry. 2016;3:2055–2059.
  • Ravindran V. Poultry feed availability and nutrition in developing countries. Poultry Dev Rev. 2013;01:60–63.
  • Debnath BC, Biswas P, Roy B. The effects of supplemental threonine on performance, carcass characteristics, immune response and gut health of broilers in subtropics during pre-starter and starter period. J Anim Physiol Anim Nutr. 2019;103(1):29–40.
  • Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem. 2005;43(8):729–745.
  • Lea PJ, Sodek L, Parry MA, et al. Asparagine in plants. Ann Appl Biol. 2007;150(1):1–26.
  • Sharma SS, Dietz K-J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot. 2006;57(4):711–726.
  • Chrystal PV, Moss AF, Khoddami A, et al. Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poult Sci. 2020;99(3):1421–1431.
  • Ognik K, Konieczka P, Mikulski D, et al. The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet Res. 2020;51(1):1–14.
  • Ho S-H, Huang S-W, Chen C-Y, et al. Characterization and optimization of carbohydrate production from an indigenous microalga chlorella vulgaris FSP-E. Bioresour Technol. 2013;135:157–165.
  • Metting Jr. FB, Biodiversity and application of microalgae. J Ind Microbiol Biotechnol. 1996;17(5-6):477–489.
  • Yeh K-L, Chang J-S. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol. 2012;105:120–127.
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516.
  • Zhang W, Zhang P, Sun H, et al. Effects of various organic carbon sources on the growth and biochemical composition of chlorella pyrenoidosa. Bioresour Technol. 2014;173:52–58.
  • Rizwan M, Lee JH, Gani R. Superstructure optimization of biodiesel production from microalgal biomass. IFAC Proceedings. 2013;46:111–116.
  • Almutairi AW. Evaluation of halophilic microalgae isolated from Rabigh Red Sea coastal area for biodiesel production: screening and biochemical studies. Saudi J Biol Sci. 2022;29(8):103339.
  • Sheehan J, Dunahay T, Benemann J, et al. Look back at the U.S. Department of Energy's aquatic species program: biodiesel from algae; Close-Out Report.; National Renewable Energy Lab., Golden, CO. (US); 1998. p. Medium: ED; Size: 325 pages.
  • Almutairi AW. Effects of nitrogen and phosphorus limitations on fatty acid methyl esters and fuel properties of Dunaliella salina. Env Sci Pollut Res. 2020;27(26):32296–32303.
  • Wan M, Liu P, Xia J, et al. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol. 2011;91(3):835–844.
  • White B. Dietary fatty acids. Am Fam Physician. 2009;80(4):345–350.
  • Gomaa M, Refaat M, Salim T, et al. Identification of green alga Chlorella vulgaris isolated from freshwater and improvement biodiesel productivity via UV irradiation. Microbiol Biotechn Lett. 2019;47:381–389.
  • Almutairi AW, El-Sayed AE-KB, Reda MM. Evaluation of high salinity adaptation for lipid bio-accumulation in the green microalga Chlorella vulgaris. Saudi J Biol Sci. 2021;28(7):3981–3988.
  • El-Sayed A, Nashwa A, El-Fakharany M. Bioethanol production from Egyptian alga Enteromorpha sp. Middle East Journal of Applied Sciences. 2017;1:216–225.
  • Fetyan NA, El-Sayed AE-KB, Ibrahim FM, et al. Bioethanol production from defatted biomass of nannochloropsis oculata microalgae grown under mixotrophic conditions. Environ Sci Pollut Res. 2022;29(2):2588–2597.
  • Zabed HM, Akter S, Yun J, et al. Biogas from microalgae: technologies, challenges and opportunities. Renewable Sustainable Energy Rev. 2020;117:109503.
  • Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014;2(5):443–463.
  • El-Sayed AEB, Aboulthana WM, El-Feky AM, et al. Bio and phyto-chemical effect of Amphora coffeaeformis extract against hepatic injury induced by paracetamol in rats. Mol Biol Rep. 2018 Dec;45(6):2007–2023.
  • Hassan N, Mohamed Z, El-Sayed A. Production and evaluation of pasta supplemented with Spirulina platensis biomass. Adv Food Sci. 2015;37(4):153–162.