480
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Slippery boundary and radiative transport in unsteady features of Maxwell fluid over stretched cylinder

, & ORCID Icon
Article: 2198480 | Received 04 Jan 2023, Accepted 25 Mar 2023, Published online: 05 Apr 2023

References

  • Fourier J. Theorie Analytique De La Chaleur. Père et Fils: Chez Firmin Didot; 1822.
  • Cattaneo C. Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena. 1948;3:83–101.
  • Christov CA. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36(4):481–486.
  • Hayat T, Qayyum S, Imtiaz M, et al. Impact of Cattaneo-Christov heat flux in Jeffrey liquid movement with homogeneous–heterogeneous reactions. Plos One. 2016;11(2):e0148662.
  • Mustafa M. Cattaneo-Christov heat flux model for rotating movement and heat transfer of upper-convected Maxwell liquid. Aip Adv. 2015;5(4):047109.
  • Hafeez A, Khan M, Ahmed A, et al. Features of Cattaneo-Christov double diffusion theory on the movement of non-Newtonian Oldroyd-B nanoliquid with joule heating. Appl Nanosci. 2022;12:265–272.
  • Nayak MK, Mabood F, Tlili I, et al. Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy-Forchheimer movement of SWCNT/MWCNT nanomaterials. Appl Nanosci. 2021;11:399–418.
  • Rajagopal KR. A note on novel generalizations of the Maxwell liquid model. Int J Non-Linear Mech. 2012;47(1):72–76.
  • Abel MS, Tawade JV, Nandeppanavar MM. MHD movement and heat transfer for the upper-convected Maxwell liquid over a stretching sheet. Meccanica. 2012;47:385–393.
  • Ahmed A, Khan M, Ahmed J. Mixed convective movement of Maxwell nanoliquid induced by a vertically rotating cylinder. Appl Nanosci. 2020;10:5179–5190.
  • Akhtar S, Jamil S, Shah NA, et al. Effects of zeta potential in fractional pulsatile electroosmotic movement of Maxwell liquid. Chin J Phys. 2022;76:59–67.
  • Yang W, Chen X, Jiang Z, et al. Effects of slip periphery condition in movement and heat transfer of a double fractional Maxwell liquid. Chin J Phys. 2020;68:214–223.
  • Ahmed A, Khan M, Ahmed J, et al. Mixed convection in unsteady stagnation point movement of Maxwell liquid subjected to modified Fourier’s law. Arab J Sci Eng. 2020;45:9439–9447.
  • Ahmed A, Khan M, Ahmed J, et al. Unsteady stagnation point movement of Maxwell nanoliquid over stretching disk with Joule heating. Arab J Sci Eng. 2020;45:5529–5540.
  • Sanni KM, Hussain Q, Asghar S. Thermal analysis of a hydromagnetic viscoelastic liquid movement over a continuous curved stretching surface in the presence of radiative heat flux. Arab J Sci Eng. 2021;46:631–644.
  • Wang CY. Movement due to a stretching periphery with partial slip-an exact solution of the Navier-Stokes equations. Chem Eng Sci. 2002;57:3745–3747.
  • Sparrow E, Beavers G, Hung L. Movement about a porous-surfaced rotating disk. Int J Heat Mass Transf. 1971;14:993–996.
  • Turkyilmazoglu M, Senel P. Heat and mass transfer of the movement due to a rotating rough and porous disk. Int J Therm Sci. 2013;63:146–158.
  • Sahoo B. Effects of partial slip, viscous dissipation and joule heating on von karman movement and heat transfer of an electrically conducting non-Newtonian liquid. Commun Nonlinear Sci Numer Simul. 2009;14:2982–2998.
  • Okechi NF. Stojes slip movement in a rough microchannel with transversely corrugated walls. Chin J Phys. 2022;78:495–510.
  • Bhatti K, Bano Z, Siddiqui AM. Analysis of slip effects on slow viscoelastic movement of second order liquid through a small diameter permeable tube. Chin J Phys. 2022;77:632–645.
  • Mandal IC, Mukhopadhyay S. Nonlinear convection in micropolar liquid movement past an exponentially stretching sheet in an exponentially moving stream with thermal radiation. Mech Adv Mater Struct. 2019;26:2040–2046.
  • Rashidi MM, Mohimanian Pour SA, Abbasbandy S. Analytic approximate solutions for heat transfer of a micropolar liquid through a porous medium with radiation. Commun Nonlinear Sci Numer Simul. 2011;16:1874–1889.
  • Mahabaleshwar US, Anusha T, Sakanka PH, et al. Impact of inclined lorentz force and schmidt number on chemically reactive Newtonian liquid movement on a stretchable surface when Stefan blowing and thermal radiation are significant. Arab J Sci Eng. 2021;46:12427–12443.
  • Rafiq MY, Abbas Z. Impacts of viscous dissipation and thermal radiation on rabinowitch liquid model obeying peristaltic mechanism with wall properties. Arab J Sci Eng. 2021;46:12155–12163.
  • Ahmad S, Nadeem S, Khan MN. Enhanced transport properties and its theoretical analysis in two-phase hybrid nanoliquid. Appl Nanosci. 2022;12:309–316.
  • Ali M, Shahzad M, Sultan F, et al. Numerical analysis of chemical reaction and nonlinear radiation for magneto-cross nanoliquid over a stretching cylinder. Appl Nanosci. 2020;10:3259–3267.
  • Ramesh GK, Madhukesh JK. Activation energy process in hybrid CNTs and induced magnetic slip movement with heat source/sink. Chin J Phys. 2021;73:375–390.
  • Jaafar A, Waini I, Jamaludin A, et al. MHD movement and heat transfer of a hybrid nanoliquid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chin J Phys. 2022;79:13–27.
  • Bashir S, Ramzan M, Malik MY, et al. Comparative analysis of five nanoparticles in the movement of viscous liquid with nonlinear radiation and homogeneous-heterogeneous reaction. Arab J Sci Eng. 2022;47:8129–8140.
  • Ray AK, Vasu B, Murthy PVSN, et al. Convective movement of non-homogeneous liquid conveying nano-sized particles with non-Fourier thermal relaxation: application in a polymer coating. Arab J Sci Eng. 2022;47:6559–6576.
  • Gangadhar K, Kumari MA, Venkata Subba Rao M, et al. Oldroyd-B nanoliquid movement through a triple stratified medium submerged with gyritactic bioconvection and nonlinear radiations. Arab J Sci Eng. 2022;47:8863–8875.
  • Luo M, Wang C, Zhao J, et al. Characteristics of effective thermal conductivity of porous materials considering thermal radiation: a pore-level analysis. Int J Heat Mass Transf. 2022;188:122597.
  • Zhang Y-M, Antezza M, Wang J-S. Controllable thermal radiation from twisted bilevel graphene. Int J Heat Mass Transf. 2022;194:123076.
  • Waqas M, Khan MI, Hayat T, et al. Stratified movement of an Oldroyd-B nano liquid with heat generation. Results Phys. 2017;7:2489–2496.
  • Turkyilmazoglu M. Heat transfer enhancement feature of the Non-Fourier Cattaneo-Christov Heat Flux model. ASME J Heat Transfer. 2021;143(9):094501.
  • Turkyilmazoglu M. Exact solutions concerning momentum and thermal fields induced by a long circular cylinder. Eur Phys J Phys. 2021;136:483.
  • Majeed A, Golsanami N, Gong B, et al. Analysis of thermal radiation in magneto-hydrodynamic motile gyrotactic micro-organisms flow comprising tiny nanoparticle towards a nonlinear surface with velocity slip. Alex Eng J. 2023;66:543–553.
  • Majeed A, Rifaqat S, Zeeshan A, et al. Impact of velocity slip and radiative magnetized Casson nanofluid with chemical reaction towards a nonlinear stretching sheet: three-stage Lobatto collocation scheme. Int J Modern Phys B. 2023;37(09):2350088.
  • Majeed A, Zeeshan A, Jawad M. Double stratification impact on radiative MHD flow of nanofluid toward a stretchable cylinder under thermophoresis and brownian motion with multiple slip. Int J Modern Phys B. 2023. doi:10.1142/S0217979223502326.
  • Akram J, Zeeshan A, Alhodaly MS, et al. Evaluation of Magnetohydrodynamics of natural convective heat flow over circular cylinder saturated by nanofluid with thermal radiation and heat generation effects. Mathematics. 2022;10(11):1858.
  • Majeed A, Amin N, Zeeshan A, et al. Numerical investigation on activation energy of chemically reactive heat transfer unsteady flow with multiple slips. Int J Numer Methods H. 2020;30(11):4955–4977.
  • Majeed A, Zeeshan A, Ellahi R. Chemical reaction and heat transfer on boundary layer Maxwell ferro-fluid flow under magnetic dipole with Soret and suction effects. Eng Sci Tech, Int J. 2017;20(3):1122–1128.
  • Ellahi R, Alamri SZ, Basit A, et al. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–482.
  • Hayat T, Saif RS, Ellahi R, et al. Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness. Int J Therm Sci. 2018;132:344–354.