2,214
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Derivatizing agents for spectrophotometric and spectrofluorimetric determination of pharmaceuticals: a review

ORCID Icon, &
Article: 2206363 | Received 03 Sep 2022, Accepted 17 Apr 2023, Published online: 04 May 2023

References

  • Omar MA, Derayea SM, Abdel-Lateef MA, et al. Derivatization of labetalol hydrochloride for its spectrofluorimetric and spectrophotometric determination inhuman plasma: application to stability study. Spectrochim Acta, Part A. 2018;190:457–463.
  • Önal A. Spectrophotometric and spectrofluorimetric determination of some drugs containing secondary amino group in bulk drug and dosage forms via derivatization with 7-chloro-4-nitrobenzofurazon. Quím Nova. 2011;34:677–682.
  • El-Enany N. Spectrofluorimetric and spectrophotometric determination of gliclazide in pharmaceuticals by derivatization with 4-chloro-7-nitrobenzo-2-oxa-1, 3-diazole. J AOAC Int. 2003;86(2):209–214.
  • Cini N, Gölcü A. Spectrophotometric methodologies applied for determination of pharmaceuticals. Curr Anal Chem. 2021;17(8):1141–1168.
  • Gupta D, Bhardwaj S, Sethi S, et al. Simultaneous spectrophotometric determination of drug components from their dosage formulations. Spectrochim Acta, Part A. 2022: 120819.
  • Gouda AA, El-Sayed MIK, Amin AS, et al. Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: a review. Arab J Chem. 2013;6(2):145–163.
  • Kaur K, Kumar A, Malik AK, et al. Spectrophotometric methods for the determination of fluoroquinolones: a review. Crit Rev Anal Chem. 2008;38(1):2–18.
  • Gamal M, Ali HM, El-Shaheny R, et al. Facile conversion of the quinone-semicarbazone chromophore of naftazone into a fluorescent quinol-semicarbazide: kinetic study and analysis of naftazone in pharmaceuticals and human serum. Sensors. 2022;22(16):6205.
  • Sushma K, Ghosh S, Banji D. Role of chemical and analytical reagents in colorimetric estimation of pharmaceuticals-a review. Int J Med Pharm Res. 2013;1(5):433–445.
  • Kumar AP, Kumar D. Determination of pharmaceuticals by UV-visible spectrophotometry. Curr Pharm Anal. 2021;17(9):1156–1170.
  • Butnariu M, Sarac I, Samfira I. Spectrophotometric and chromatographic strategies for exploring of the nanostructure pharmaceutical formulations which contains testosterone undecanoate. Sci Rep. 2020;10(1):3569.
  • Picollo M, Aceto M, Vitorino T. UV-Vis spectroscopy. Phys Sci Rev. 2018;4(4):20180008.
  • David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr. 2021;35(1):e5008.
  • Elbordiny HS, Elonsy SM, Daabees HG, et al. Sustainable quantitative determination of allopurinol in fixed dose combinations with benzbromarone and thioctic acid by capillary zone electrophoresis and spectrophotometry: validation, greenness and whiteness studies. Sustain Chem Pharm. 2022;27:100684. doi:10.1016/j.scp.2022.100684.
  • Chen L, Wu D, Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sensors. 2018;3(1):27–43.
  • Scott RPW. Liquid chromatography systems. In: Katz E, Eksteen R, Schoenmakers P, Miller N, editors. Handbook of HPLC, chromatographic science series, Vol. 78. New York: Marcel Dekker Inc.; 1998; Chapter 15, pp. 554–555.
  • Givens RS, Rubina M, Wirz J. Applications of p-hydroxyphenacyl (p HP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem Photobiol Sci. 2012;11(3):472–488.
  • Płotka-Wasylka JM, Morrison C, Biziuk M, et al. Chemical derivatization processes applied to amine determination in samples of different matrix composition. Chem Rev. 2015;115(11):4693–4718.
  • Du J, Liu M, Lou X, et al. Highly sensitive and selective chip-based fluorescent sensor for mercuric ion: development and comparison of turn-on and turn-off systems. Anal Chem. 2012;84:8060–8066. doi:10.1021/ac301954j.
  • Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed Engl. 2008;47:1184–1201. doi:10.1002/anie.200702070.
  • Yan J, Lee S, Zhang A, et al. Self-immolative colorimetric, fluorescent and chemiluminescent chemosensors. Chem Soc Rev. 2018;47:6900–6916. doi:10.1039/c7cs00841d.
  • Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: a review. Arab J Chem. 2017;10:S1409–S1421.
  • Liu KT, Chen CH. Determination of impurities in pharmaceuticals: why and how?. In: Quality management and quality control-new trends and developments. London: IntechOpen; 2019, pp. 1–17.
  • Vashistha VK. Chiral analysis of pharmaceuticals using NMR spectroscopy: a review. Asian J Org Chem. 2022;11(12):e202200544.
  • Vashistha VK. Enantioselective analysis of mexiletine using chromatographic techniques: a review. Curr Anal Chem. 2022;18(4):440–455.
  • Vashistha VK, Bhushan R. Chirality recognition for assessing the enantiomeric purity of betaxolol. Tetrahedron Asymmetry. 2015;26:304–311. doi:10.1016/j.tetasy.2015.01.017.
  • Vashistha VK, Bhushan R. Preparative enantioseparation of (RS)-baclofen: determination of molecular dissymmetry: determining absolute configuration by 1 h nmr. Chirality. 2015;27:299–305. doi:10.1002/chir.22428.
  • Vashistha VK, Bhushan R. Sensitive enantioseparation and determination of isoprenaline in human plasma and pharmaceutical formulations. Biomed Chromatogr. 2019;33:e4550. doi:10.1002/bmc.4550.
  • Vashistha VK, Bhushan R. Thin-layer chromatographic enantioseparation of atenolol and propranolol using (S)-naproxen as chiral selector: direct and indirect approaches. J Planar Chromatogr. 2020;33:101–107. doi:10.1007/s00764-020-00017-0.
  • Vashistha VK, Martens J, Bhushan R. Sensitive RP-HPLC enantioseparation of (RS)-ketamine via chiral derivatization based on (S)-levofloxacin. Chromatographia. 2017;80:1501–1508. doi:10.1007/s10337-017-3367-2.
  • Bireddy SR, Bantu TR, Alwera V, et al. Synthesis of levofloxacin based chiral reagent and its application in determination of optical purity of essential racemic amino acids using RP-HPLC. Res J Chem Environ. 2022;26(2):1–8. doi:10.25303/2602rjce0108.
  • Bhushan R, Vashistha VK. Synthesis of variants of marfey’s reagent having d-amino acids as chiral auxiliaries and liquid-chromatographic enantioseparation of (RS)-mexiletine in spiked plasma: assessment and comparison with L-amino acid analogs. J Chromatogr A. 2015;1379:43–50. doi:10.1016/j.chroma.2014.12.033.
  • Vashistha VK, Bhushan R. Bioanalysis and enantioseparation of dl-carnitine in human plasma by the derivatization approach. Bioanalysis. 2015;7:2477–2488. doi:10.4155/bio.15.155.
  • Adegoke OA. Chemical derivatization methodologies for UV-visible spectrophotometric determination of pharmaceuticals. Int J Pharm Sci Rev Res. 2012;14(2):6–24.
  • Sousa BC, Pitt AR, Spickett CM. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic Biol Med. 2017;111:294–308. doi:10.1016/j.freeradbiomed.2017.02.003.
  • Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698–725. doi:10.1016/j.progpolymsci.2007.04.002.
  • Jeon S, Kim TI, Jin H, et al. Amine-reactive activated esters of meso-CarboxyBODIPY: fluorogenic assays and labeling of amines, amino acids, and proteins. J Am Chem Soc. 2020;142(20):9231–9239.
  • Kalampaliki AD, Vincent S, Mallick S, et al. Synthesis, spectroscopic and computational evaluation of a xanthene-based fluorogenic derivatization reagent for the determination of primary amines. Dyes Pigm. 2021;196:109798. doi:10.1016/j.dyepig.2021.109798.
  • Ferré S, González-Ruiz V, Guillarme D, et al. Analytical strategies for the determination of amino acids: past, present and future trends. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1132:121819. doi:10.1016/j.jchromb.2019.121819.
  • Wang Y, Li X, Zhao S, et al. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coord Chem Rev. 2022;470:214703.
  • Ellis GA, Klein WP, Lasarte-Aragonés G, et al. Artificial multienzyme scaffolds: pursuing in vitro substrate channeling with an overview of current progress. ACS Catal. 2019;9:10812–10869. doi:10.1021/acscatal.9b02413.
  • Ruiu A, Vonlanthen M, Rojas-Montoya SM, et al. Unusual fluorescence behavior of pyrene-amine containing dendrimers. Molecules. 2019;24(22):4083.
  • Descalzo AB, Rurack K, Weisshoff H, et al. Rational design of a chromo- and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates. J Am Chem Soc. 2005;127:184–200. doi:10.1021/ja045683n.
  • Parkinson DR. Analytical derivatization techniques. In: Comprehensive sampling and sample preparation. Elsevier; 2012, pp. 559–595.
  • Aboul-Enein Y, Elbashir A, Suliman F. The application of 7-chloro-4-nitrobenzoxadiazole and 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole for the analysis of amines and amino acids using high-performance liquid chromatography. Gazi Univ J Sci. 2011;24(4):679–697.
  • Saputri FA, Pratiwi R. 4-chloro-7-nitrobenzofurazan (nbd-cl) as pre and post-column derivatization reagent for amine groups analysis using chromatography: a mini-review. Int J Appl Pharm. 2023;15(1):20–23.
  • Elbashir AA, Suliman FEO, Aboul-Enein HY. The application of 7-chloro-4-nitrobenzoxadiazole (NBD-Cl) for the analysis of pharmaceutical-bearing amine group using spectrophotometry and spectrofluorimetry techniques. Appl Spectrosc Rev. 2011;46(3):222–241.
  • Munir MA, Badri KH. The importance of derivatizing reagent in chromatography applications for biogenic amine detection in food and beverages. J Anal Methods Chem. 2020;2020.
  • Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. Curr Top Membr. 2021;88:257–314.
  • Gilchrist TL, O’Neill PM. 1,2,3-Oxadiazoles. In: Comprehensive heterocyclic chemistry II. Elsevier; 1996, pp. 165–178.
  • El-Enany N, El-Sherbiny D, Belal F. Spectrophotometric, spectrofluorometric and HPLC determination of desloratadine in dosage forms and human plasma. Chem Pharm Bull. 2007;55:1662–1670. doi:10.1248/cpb.55.1662.
  • Taha EA, Salama NN, Fattah LE-SA. Spectrofluorimetric and spectrophotometric stability-indicating methods for determination of some oxicams using 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). Chem Pharm Bull. 2006;54:653–658. doi:10.1248/cpb.54.653.
  • Imai K, Toyo’oka T, Miyano H. Fluorigenic reagents for primary and secondary amines and thiols in high-performance liquid chromatography. A review. Analyst. 1984;109:1365. doi:10.1039/an9840901365.
  • Omar MA, Anwer EF, Nour El-Deen DAM. Derivatization of tranexamic acid for its rapid spectrofluorimetric determination in pure form and pharmaceutical formulations: application in human plasma. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119111. doi:10.1016/j.saa.2020.119111.
  • Changchit, Gal J, Zirrolli JA. Stereospecific gas chromatographic/mass spectrometric assay of the chiral labetalol metabolite 3-amino-1-phenylbutane. Biol Mass Spectrom. 1991;20:751–758. doi:10.1002/bms.1200201202.
  • Kernaghan D, McKay G. Labetalol: labetalol. Pract Diabetes Int. 2011;28:139–140. doi:10.1002/pdi.1579.
  • Anwer EF, Nour El-Deen DAM, Derayea SM, et al. Benzofurazan -based fluorophore for the spectrofluorimetric determination of 6-aminocaproic acid: application to spiked human plasma and urine. Spectrochim Acta A Mol Biomol Spectrosc. 2022;268:120723. doi:10.1016/j.saa.2021.120723.
  • Aly H, El-Shafie AS, El-Azazy M. Utilization of 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl) for spectrochemical determination of L-ornithine: A multivariate optimization-assisted approach. RSC Adv. 2019;9(38):22106–22115.
  • Almahri A. Utility of 4-chloro-7-nitrobenzofurazan for spectrofluorimetric and spectrophotometric determinations of the anti-hirsutism agent (α-difluoromethylornithine) in pharmaceutical cream samples. Luminescence. 2021;36(5):1231–1238.
  • Perrett D, Nayuni NK. Efficacy of current and novel cleaning technologies (ProReveal) for assessing protein contamination on surgical instruments. In: Walker JT, editor. Decontamination in hospitals and healthcare. Sawston: Elsevier; 2014, pp. 598–619.
  • Friedman M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J Agric Food Chem. 2004;52:385–406.
  • Rahman N, Kashif M. Application of ninhydrin to spectrophotometric determination of famotidine in drug formulations. Farmaco. 2003;58:1045–1050. doi:10.1016/S0014-827X(03)00184-8.
  • Ramadan AA, Mandil H, Dahhan M, Spectrophotometric determination of cefixime in pure form and in syrian pharmaceuticals through complexation with Cu(II). Asian J Chem. 2013;25:3457–3462.
  • Wani YB, Patil DD. An experimental design approach for optimization of spectrophotometric method for estimation of cefixime trihydrate using ninhydrin as derivatizing reagent in bulk and pharmaceutical formulation. J Saudi Chem Soc. 2017;21:S101–S111. doi:10.1016/j.jscs.2013.11.001.
  • Tripathi KD. Essentials of medical pharmacology. 8th ed. New Delhi: Jaypee Brothers Medical; 2018.
  • Vaikosen EN, Origbo SO, Ere D, et al. Comparative application of biological and ninhydrin-derivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection. Braz J Pharm Sci. 2023;58:1–13.
  • Patil DD, Patil MS, Wani YB. Spectrophotometric method for pregabalin determination: An experimental design approach for method development. J Assoc Arab Univ Basic Appl Sci. 2016;21:31–37. doi:10.1016/j.jaubas.2015.03.002.
  • Indian Pharmacopoeia. I.P. Commission, Ghaziabad, 2010.
  • Adegoke OA, Thomas OE, Makanjuola DM, et al. Spectrophotometric determination of olanzapine after condensation with p-dimethylaminobenzaldehyde. J Taibah Univ Sci. 2014;8(3):248–257.
  • Bandalaa ER, Gonzeza L, de la Hozb F, et al. Azo dyes – biological activity and synthetic trategy. Chemik Sci-Tec-Market. 2012;66:1298–1307.
  • Bandala ER, González L, de la Hoz F, et al. Application of azo dyes as dosimetric indicators for enhanced photocatalytic solar disinfection (ENPHOSODIS). J Photochem Photobiol A Chem. 2011;218:185–191. doi:10.1016/j.jphotochem.2010.12.016.
  • Shaikh A, Meshram JS. Design, synthesis and pharmacological assay of novel azo derivatives of dihydropyrimidinones. Cogent Chem. 2015;1:1019809. doi:10.1080/23312009.2015.1019809.
  • Naser NA, Alasedi KM, Khan ZA. New approach for determination of sulfadiazine in pharmaceutical preparations using 4(4-sulphophenylazo)pyrogallol: kinetic spectrophotometric method. Spectrochim Acta A Mol Biomol Spectrosc. 2018;201:267–280. doi:10.1016/j.saa.2018.05.012.
  • Okolo PO, Ukpebor EE. Stoichiometry of quinol/ammonium-nitrogen complex using spectrophotometry. Jour Chem Soc Pak. 2004;26:207–211.
  • Li J, Kong H, Huang L, et al. Visible lightinitiated bioorthogonal photoclick cycloaddition. J Am Chem Soc. 2018;140:14542–14546. doi:10.1021/jacs.8b08175.
  • Abdelrahman MM, Emam RA, Ali NW, et al. Validated spectrofluorometric determination of hypoglycemic combination, in pure form and pharmaceutical formulation using 9,10-phenanthraquinone reagent. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119078. doi:10.1016/j.saa.2020.119078.
  • Sweetman SC, editor. Martindale: The complete drug reference, 37th ed., Stuttgart, Germany: Deutscher Apotheker Verlag; 2011.
  • Kothari V, Galdo JA, Mathews ST. Hypoglycemic agents and potential anti-inflammatory activity. J Inflamm Res. 2016;9:27–38. doi:10.2147/JIR.S86917.
  • Udenfriend S, Stein S, Böhlen P, et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972;178:871–872. doi:10.1126/science.178.4063.871.
  • González de Llano D, Polo Sánchez C. PEPTIDES. In: Caballero B, Trugo L, Finglas P, editors. Encyclopedia of food sciences and nutrition. Cambridge (MA): Elsevier; 2003, pp. 4468–4473.
  • Omar MA, Hammad MA, Salman BI, et al. Highly sensitive spectrofluorimetric method for determination of doxazosin through derivatization with fluorescamine; application to content uniformity testing. Spectrochim Acta, Part A. 2016;157:55–60.
  • Darwish IA, Khalil NY, Bakheit AH, et al. A highly sensitive fluorimetric method for determination of lenalidomide in its bulk form and capsules via derivatization with fluorescamine. Chem Cent J. 2012;6:1–7.
  • Abdel-Lateef MA, Almahri A. Micellar sensitized resonance Rayleigh scattering and spectrofluorometric methods based on isoindole formation for determination of eflornithine in cream and biological samples. Spectrochim Acta A Mol Biomol Spectrosc. 2021;258:119806. doi:10.1016/j.saa.2021.119806.
  • Kumar A, Singh V, Kumar P. Spectrophotometric determination of eflornithine hydrochloride using vanillin as derivative chromogenic reagent. Trop J Pharm Res. 2014;13:1917. doi:10.4314/tjpr.v13i11.21.
  • Kumar A, Singh V, Kumar P. Spectrophotometric estimation of eflornithine hydrochloride by using ion-pair reagents. Pak J Pharm Sci. 2015;28:623–629.
  • Christian J, Shah P, Patel M, et al. Optimizing derivatization conditions using an experimental design and simultaneous estimation of artemether and lumefantrine by ratio first order derivative spectrophotometric method. J Taibah Univ. 2017;11:729–740. doi:10.1016/j.jtusci.2016.08.003.
  • Ali HM, Hammad SF, El-Malla SF. Green spectrophotometric methods for determination of a monosodium glutamate in different matrices. Microchem J. 2021;169:106622. doi:10.1016/j.microc.2021.106622.
  • El-Didamony AM. Application of brominating agents and potassium dichromate for the spectrophotometric determination of captopril in pharmaceutical formulations. Main Group Chem. 2012;11:285–297. doi:10.3233/mgc-120081.
  • Sunil Kumar AVVNK, Reddy TV, Sekharan CB. Spectrophotometric determination of alogliptin in bulk and tablet dosage form using bromate–bromide mixture as brominating agent. Karbala Int J Mod Sci. 2017;3:8–17. doi:10.1016/j.kijoms.2016.12.002.
  • Al-Ghannam S, Belal F. Spectrophotometric determination of three anti-ulcer drugs through charge-transfer complexation. J AOAC Int. 2002;85:1003–1008. doi:10.1093/jaoac/85.5.1003.
  • Abdel-Hay MH, Sabry SM, Barary MH, et al. Spectrophotometric determination of bisacodyl and piribedil. Anal Lett. 2004;37:247–262. doi:10.1081/al-120027790.
  • Darwish IA. Analytical study for the charge-transfer complexes of losartan potassium. Anal Chim Acta. 2005;549:212–220. doi:10.1016/j.aca.2005.06.023.
  • Darwish IA, Refaat IH. Spectrophotometric analysis of selective serotonin reuptake inhibitors based on formation of charge-transfer complexes with tetracyanoquinodimethane and chloranilic acid. J AOAC Int. 2006;89:326–333. doi:10.1093/jaoac/89.2.326.
  • Abdel-Hay MH, Sabry SM, Belal TS, et al. Spectrophotometric determination of rabeprazole sodium using two charge transfer complexation reactions. J Appl Pharm Sci. 2013;3:128–133. doi:10.7324/JAPS.2013.31123.
  • Raza A, Ansari TM. Development and applications of spectrophotometric methods for quantitative determination of caroverine in pharmaceutical pure and tablet formulations. Anal Chem Res. 2015;4:33–38.
  • Jado D, Siraj K, Meka N. Electron donor-acceptor interaction of 8-hydroxyquinoline with citric acid in different solvents: spectroscopic studies. J Appl Chem. 2014;2014:1–7.
  • Panainte A-D, Bibire N, Tântaru G, et al. Validation of a spectrophotometric assay method for bisoprolol using picric acid. Rev Med Chir Soc Med Nat Iasi. 2013;117:520–524.
  • Sher N, Fatima N, Perveen S, et al. Pregabalin and tranexamic acid evaluation by two simple and sensitive spectrophotometric methods. Int J Anal Chem. 2015;2015:241412. doi:10.1155/2015/241412.
  • Abdulrahman SAM, Basavaiah K. Sensitive and selective spectrophotometric determination of gabapentin in capsules using two nitrophenols as chromogenic agents. Int J Anal Chem. 2011;2011:619310. doi:10.1155/2011/619310.
  • Prashanth KN, Swamy N, Basavaiah K. Rapid spectrophotometric determination of trifluoperazine dihydrochloride as base form in pharmaceutical formulation through charge-transfer complexation. Acta Pol Pharm. 2016;73:627–636.
  • Sunil Kumar AVVNK, Reddy TV, Sekharan CB. Utility of picric acid and 2,4 dinitrophenol as chromogenic reagents for visible spectrophotometric quantification of alogliptin. Bull Fac Pharm Cairo Univ. 2017;55:177–184. doi:10.1016/j.bfopcu.2017.02.002.
  • Said S, Nwosu AC, Mukherjee D, et al. Alogliptin; a review of a new dipeptidyl peptidase-4 (DPP-4) inhibitor for the treatment of type 2 diabetes mellitus. Cardiovasc Hematol Disord Drug Targets. 2014;14:64–70. doi:10.2174/1871529(14666140701095849.
  • Marino AB, Cole SW. Alogliptin: safety, efficacy, and clinical implications: safety, efficacy, and clinical implications. J. Pharm. Pract. 2015;28:99–106. doi:10.1177/0897190014522063.
  • Belal TS, El-Kafrawy DS, Mahrous MS, et al. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions. Spectrochim Acta A Mol Biomol Spectrosc. 2016;155:47–53. doi:10.1016/j.saa.2015.11.008.
  • Baker MM, El-Kafrawy DS, Abdel-Khalek MM, et al. Validated spectrophotometric determination of maduramicin ammonium using three charge transfer complexation reactions. Ann Pharm Fr. 2020;78:388–397. doi:10.1016/j.pharma.2020.04.002.
  • Covington P, Christopher R, Davenport M, et al. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther. 2008;30:499–512. doi:10.1016/j.clinthera.2008.03.004.
  • Golightly LK, Drayna CC, McDermott MT. Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors. Clin Pharmacokinet. 2012;51:501–514. doi:10.1007/bf03261927.
  • Adegoke OA, Babalola CP, Kotila OA, et al. Simultaneous spectrophotometric determination of trimethoprim and sulphamethoxazole following charge-transfer complexation with chloranilic acid. Arab J Chem. 2017;10:S3848–S3860. doi:10.1016/j.arabjc.2014.05.022.
  • Hardman JG, Limbird LE, editors, Antimicrobial agents (continued): sulfonamides, trimethoprim–sulfamethoxzole, quinolones and agents for urinary tract infections. In: Hardman JG, Limbird LE, editors, Goodman and gilman’s pharmacological basis of therapeutics, 9th ed. New York: McGraw-Hill; 1996, p. 1057.
  • Qureshi SZ, Helaleh MIH, Rahman N, et al. Spectrophotometric determination of trimethoprim by oxidation in drug formulations. Fresenius J Anal Chem. 1997;357:1005–1007. doi:10.1007/s002160050293.