1,496
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Environmental monitoring of a smart greenhouse powered by a photovoltaic cooling system

, ORCID Icon &
Article: 2207775 | Received 15 Feb 2023, Accepted 24 Apr 2023, Published online: 05 May 2023

References

  • Rayhana R, Xiao G, Liu Z. Internet of things empowered smart greenhouse farming. IEEE J Radio Freq Identif. 2020;4:195–211. doi:10.1109/JRFID.2020.2984391.
  • Al-Abdulkader AM. Financial analysis of greenhouse vegetable specialized projects in Saudi Arabia. International Symposium on Greenhouses, Environmental Controls and In-House Mechanization for Crop Production in the Tropics; 2004 710, 527–534. doi:10.17660/ActaHortic.2006.710.66
  • Fiaz S, Noor MA, Aldosri FO. Achieving food security in the Kingdom of Saudi Arabia through innovation: potential role of agricultural extension. J Saudi Soc Agric Sci. 2018;17:365–375.
  • Gorjian S, Ebadi H, Najafi G, et al. Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems. Sustain Energy Technol Assess. 2021;43:100940.
  • Katzin D, Eldert JvH, van Mourik S. Process-based greenhouse climate models: genealogy, current status, and future directions. Agric Syst. 2022;198(2022):103388.
  • Abdel-Ghany AM. Solar energy conversions in the greenhouses. Sustain Cities Soc. 2011;1(4):219–226. doi:10.1016/j.scs.2011.08.002.
  • Romantchik E, Ríos E, Sánchez E, et al. Determination of energy to be supplied by photovoltaic systems for fan-pad systems in cooling process of greenhouses. Appl Therm Eng. 2017;114:1161–1168. doi:10.1016/j.applthermaleng.2016.10.011.
  • Fatnassi H, Poncet C, Bazzano MM, et al. A numerical simulation of the photovoltaic greenhouse microclimate. Sol Energy. 2015;120:575–584.
  • Rossela V, Johan RA, Bouma J. Soil sensing: a new paradigm for agriculture. Agric Sys. October 2016;148:71–74.
  • Oliveira J, Boaventura-Cunha J, Oliveira PM. Automation and control in greenhouses: state-of-the-Art and future trends. In Lecture notes in electrical engineering. Berlin, Germany: Springer Science and Business Media LLC; 2017. 402, p. 597–606. doi:10.1007/978-3-319-43671-5_50
  • Kumar DC, Adiraju RV, Pasupuleti S, et al. A review of smart greenhouse farming by using sensor network technology. Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications; 2021, 849–856, Springer, Singapore
  • Ezzaeri K, Fatnassi H, Wifaya A, et al. Performance of photovoltaic canarian greenhouse: a comparison study between summer and winter seasons. Sol Energy. 2020;198:275–282. doi:10.1016/j.solener.2020.01.057.
  • Kumar A, Singh V, Kumar S, et al. IoT enabled system to monitor and control greenhouse. Mater Today Proc. 2020;49(Part 8):3137–3141.
  • Leithardt V, Santos D, Silva L, et al. A solution for dynamic management of user profiles in IoT environments. IEEE Lat Am Trans. 2020;18:1193–1199. doi:10.1109/TLA.2020.9099759.
  • Nawandar NK, Satpute VR. IoT based low cost and intelligent module for smart irrigation system. Comput Electron Agric 2019;162:979–990.
  • Martins JA, Ochôa IS, Silva LA, et al. Pripro: a comparison of classification algorithms for managing receiving notifications in smart environments. Appl Sci. 2020;10:502, doi:10.20944/preprints201911.0022.v1.
  • Shamshiri RR, Bojic I, van, Henten E, et al. Model-based evaluation of greenhouse microclimate using IoT-sensor data fusion for energy efficient crop production. J Clean Prod. 2020;263:121303, doi:10.1016/j.jclepro.2020.121303.
  • Castañeda-Miranda A, Castaño-Meneses VM. Internet of things for smart farming and frost intelligent control in greenhouses. Comput Electron Agric 2020;176:105614.
  • Ouammi A, Achour Y, Dagdougui H, et al. Optimal operation scheduling for a smart greenhouse integrated microgrid. Energy Sustain Dev. 2020;58:129–137.
  • Raina G, Sinha S. Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions. Energy Sustain Dev. 2023;72:301–313.
  • Chiu YC, Yang P-Y, Grift TE. A wireless communication system for automated greenhouse operations. Eng Agric Environ Food. 2014;7:78–85.
  • Liao M-S, Chen S-F, Chou C-Y, et al. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Comput Electron Agric 2017;136:125–139.
  • Benzaouia M, Hajji B, Rabhi A, et al. Energy management strategy for an optimum control of a standalone photovoltaic-batteries water pumping system for agriculture applications. International Conference on Electronic Engineering and Renewable Energy. Singapore: Springer; 2020. p. 855–868. doi:10.1007/978-981-15-6259-4_89
  • Aschilean I, Rasoi G, Raboaca MS, et al. Design and concept of an energy system based on renewable sources for greenhouse sustainable agriculture. Energies. 2018;11:1201, doi:10.3390/en11051201.
  • Mishra M, Choudhury P, Pati B. Modified ride-NN optimizer for the IoT based plant disease detection. J Ambient Intell Humaniz Comput. 2021;12:691–703. doi:10.1007/s12652-020-02051-6.
  • Kim S, Lee M, Shin C. IoT-based strawberry disease prediction system for smart farming. Sensors. 2018;18:4051, doi:10.3390/s18114051.
  • Pavel MI, Kamruzzaman SM, Hasan SS, et al. An IoT based plant health monitoring system implementing image processing. Proceedings of the 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS); Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, USA, 25 Feb 2019; p. 299–303. doi:10.1109/CCOMS.2019.8821782
  • Khattab A, Habib SE, Ismail H, et al. An IoT-based cognitive monitoring system for early plant disease forecast. Comput Electron Agric 2019;166:105028.
  • Verma S, Chug A, Singh A. Prediction models for identification and diagnosis of tomato plant diseases. Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI); Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, USA, 16 April 2018; p. 1557–1563. doi:10.1109/ICACCI.2018.8554842
  • Diyan M, Khan M, Silva BN, et al. Scheduling sensor duty cycling based on event detection using Bi-directional long short-term memory and reinforcement learning. Sensors. 2020;20:5498.
  • DatabaseTomate. [cited 2021 May 27]. Available from: https://data.mendeley.com/datasets/ngdgg79rzb/1.
  • Mellit A, Benghanem M, Herrak O, et al. Design of a novel remote monitoring system for smart greenhouses using the internet of things and deep convolutional neural networks. Energies. 2021;14:5045.
  • Benghanem M, Joraid M, A A. A multiple correlation between different solar parameters in Medina, Saudi Arabia. Renew Energy. 2007;32(14):2424–2435.
  • Rouibah, N., Barazane, L., Benghanem, M., Mellit, A. (2021). IoT-based low-cost prototype for online monitoring of maximum output power of domestic photovoltaic systems. ETRI J., 43, 459–470. doi:10.4218/etrij.2019-0537