496
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Using chemically modified Ocimum tenuiflorum as an efficient and low-cost biosorbent for removing Congo red from aqueous solutions

ORCID Icon
Article: 2210973 | Received 11 Sep 2022, Accepted 02 May 2023, Published online: 11 May 2023

References

  • Mall ID, Srivastava VC, Agarwal NK, et al. Removal of Congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere. 2005;61(4):492–501.
  • Mittal A, Mittal J, Malviya A, et al. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci. 2009;340:16–26.
  • Dai Y, Zhang N, Xing C, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere. 2019;223:12–27.
  • Du Q. Highly enhanced adsorption of Congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem Eng J. 2014;245:99–106.
  • He Z, Song S, Zhou H, et al. Reactive Black 5 decolorization by combined sonolysis and ozonation. Ultrason Sonochem. 2007;14(3):298–304.
  • Kaur S, Rani S, Mahajan RK. Adsorption kinetics for the removal of hazardous dye Congo red by biowaste materials as adsorbents. J Chem. 2013;2013:1–12. DOI:10.1155/2013/628582.
  • Munagapati VS, Kim DS. Equilibrium isotherms, kinetics, and thermodynamics studies for Congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotox Environ Safe. 2017;141:226–234.
  • Vandevivere PC, Bianchi R, Verstreate W. Treatment and reuse of wastewater from the textile wet processing industry: review of emerging technologies. J Chem Technol Biotechnol. 1998;72:289–302.
  • Sonwani RK, Swain G, Giri BS, et al. Biodegradation of Congo red dye in a moving bed biofilm reactor: performance evaluation and kinetic modeling. Bioresour Technol. 2020;302:122811.
  • Chakraborty S, Basak B, Dutta S, et al. Decolorization and biodegradation of Congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour Technol. 2013;147:662–666.
  • Mahmoodi NM, Saffar-Dastgerdi MH. Clean laccase immobilized nanobiocatalysts (graphene oxide – zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant. Appl Catal B. 2020;268:118443. DOI:10.1016/j.apcatb.2019.118443.
  • Mohajershojaei K, Mahmoodi NM, Khosravi A. Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems. Biotechnol Bioprocess Eng. 2015;20:109–116.
  • Ivanets A, Rozorovich V, Sarkisov V, et al. Effect of magnesium ferrite doping with lanthanide ions on dark-, visible- and UV-driven methylene blue degradation on heterogeneous Fenton-like catalysts. Ceram Int. 2021;47:29786–29794.
  • Wang C, Sun R, Huang R. Highly dispersed iron-doped biochar derived from sawdust for Fenton-like degradation of toxic dyes. J Cleaner Prod. 2021;297:126681. DOI:10.1016/j.jclepro.2021.126681.
  • Ali N, Said A, Ali F, et al. Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut. 2020;231:50.
  • Bhat SA, Zafar F, Mondal AH, et al. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J Iran Chem Soc. 2020;17:215–227.
  • Fowsiya J, Madhumitha G, Al-Dhabi NA, et al. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B. 2016;162:395–401.
  • Velkova ZY, Kirova GK, Stoytcheva MS, et al. Biosorption of Congo red and methylene blue by pretreated waste Streptomyces fradiae biomass – equilibrium, kinetic and thermodynamic studies. J Serb Chem Soc. 2018;83:107–120.
  • Kristianto H, Tanuarto MY, Prasetyo S, et al. Magnetically assisted coagulation using iron oxide nanoparticles–Leucaena leucocephala seeds’ extract to treat synthetic Congo red wastewater. Int J Environ Sci Technol. 2020;17:3561–3570.
  • Kristianto H, Tanuarto MY, Prasetyo S, et al. Magnetically assisted coagulation using iron oxide nanoparticles–Leucaena leucocephala seeds’ extract to treat synthetic Congo red wastewater. Int J Environ Sci Technol. 2020;17:3561–3570.
  • Zhu MX, Li L, Wang HH, et al. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater. 2007;149:735–741.
  • Hou T, Guo K, Wang Z, et al. Glutaraldehyde and polyvinyl alcohol crosslinked cellulose membranes for efficient methyl orange and Congo red removal. Cellulose. 2019;26:5065–5074.
  • Kausar A, et al. Dyes adsorption using clay and modified clay: a review. J Mol Liq. 2018;256:395–407.
  • Ikhazuangbe P, Adama KK, Akintoye GI. Adsorption of Congo red dye onto activated carbon from periwinkle shell. Niger J Eng Sci Res. 2020;3:63–75.
  • Lafi R, Montasser I, Hafiane A. Adsorption of Congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorp Sci Technol. 2019;37:160–181.
  • Khaniabadi YO, Mohammadi MJ, Shegerd M, et al. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell. Environ Eng Manag J. 2017;4:29–35.
  • Priyadarshini B, Patra T, Sahoo TR. An efficient and comparative adsorption of Congo red and trypan blue dyes on MgO nanoparticles: kinetics, thermodynamics and isotherm studies. J Magnes Alloy. 2020;16:53–63.
  • Abdelkader E, Nadjia L, Noelle VR. Adsorption of Congo red azo dye on nanosized SnO2 derived from sol-gel method. Int J Ind Chem. 2016;7:53–70.
  • Darwish AAA, Rashad M, Al-Aoh HA. Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies. Dyes Pigm. 2019;160:563–571.
  • Yang K, Li Y, Zheng H, et al. Adsorption of Congo red with hydrothermal treated shiitake mushroom. Mater Res Express. 2020;7:015103.
  • Litefti K, Freire MS, Stitou M, et al. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci Rep. 2019;2019(9):16530.
  • Zhou Y, Ge L, Fan N. Adsorption of Congo red from aqueous solution onto shrimp shell powder. Adsorp Sci Technol. 2018;36:1310–1330.
  • Wanyonyi WC, Onyari JM, Shiundu PM. Adsorption of Congo Red Dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies. Energy Proc. 2014;50:862–869.
  • Salahuddin N, Abdelwahab MA, Akelah A, et al. Adsorption of Congo red and crystal violet dyes onto cellulose extracted from Egyptian water hyacinth. Nat Hazards. 2021;105:1375–1394.
  • Zhang Z, Li Y, Du Q, et al. Adsorption of Congo red from aqueous solutions by porous soybean curd xerogels. Pol J Chem. 2018;20:95–102.
  • Alamrani NA, Al-Aoh HA. Elimination of Congo Red Dye from industrial wastewater using Teucrium polium L. as a low-cost local adsorbent. Adsorp Sci Technol. 2021;2021:1–12.
  • Farooqi AA, Sreeramu BS, Sreeramu BS. Cultivation of medicinal and aromatic crops, Universities Press (India) Pvt. Ltd, India, 2, Hyderabad, 2004;529–534.
  • Pingale SP, Firke NP, Markandeya AG. Therapeutic activities of Ocimum tenuiflorum accounted in last decade: a review. J Pharm Res. 2012;5:2215–2220.
  • Prakash P, Gupta N. Therapeutic use of Ocimum sanctum Linn (Tulsi) with note on eugenol and its pharmacological action, a short review. Indian J Physiol Pharmacol. 2005;49:125–131.
  • Singh S, Taneja M, Majumdar DK. Biological activities of Ocimum sanctum L. fixed oil – an overview. Indian J Exp Biol. 2007;45:403–412.
  • Singh S, Majumdar DK. Evaluation of the gastric antiulcer activity of fixed oil of Ocimum sanctum (Holy Basil). J Ethnopharmacol. 1999;65:13–19.
  • Sharma SK, Mudhoo A, Jain G, et al. Inhibitory effect of Ocimum tenuiflorum (TULSI) on the corrosion of zinc in sulphuric acid: a green approach. Rasayan J Chem. 2009;2:332–339.
  • Sharma A, Nair RK, Sharma A, et al. Combating aluminium alloy dissolution by employing Ocimum tenuiflorum leaves extract. Int J Adv Sci Tech Res. 2012;6:713–729.
  • Ugi BU, Obeten ME, Ikeuba AI. Inhibition efficiency of eco-friendly green inhibitors (Ocimum tenuiflorum phytocompounds) on corrosion of high carbon steel in HCl environment using thermometric and electrochemical methods. J Appl Electrochem. 2018;4:158–161.
  • Bagur H, Poojari CC, Melappa G, et al. Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J Clust Sci. 2020;31:1241–1255.
  • Banerjee P, Sau S, Das P, et al. Green synthesis of silver-nanocomposite for treatment of textile dye page 2 of 6. Nanosci Technol. 2014;1:1–6.
  • Kumar M, Chayadevi A, Rao P, et al. Studies on the de-fluoridation efficacy of chrysopogon zizaniodides, Ocimum tenuiflorum and their combinational use. Int J Adv Res Publ. 2017;1:106–112.
  • Sharmil SR, Venugopal T, Kannan K. Adsorption of hexavalent chromium from aqeous solution onto chemically activated Ocimum tenuiflorum stem – a kinetic, linear equilibrium and thermodynamical studies. Asian J Res Soc Sci Human. 2017;7:208–237.
  • Al-Aoh HA. Equilibrium, thermodynamic and kinetic study for potassium permanganate adsorption by neem leaves powder. Desalin Water Treat. 2019;170:101–110.
  • Mustafa SK, Al-Aoh HA, Bani-Atta SA, et al. Enhance the adsorption behavior of methylene blue from wastewater by using ZnCl2 modified neem (Azadirachta indica) leaves powder. Desalin Water Treat. 2021;209:367–378.
  • Aljohani MMH, Almizraq JMJ, Albalawi AM, et al. Efficient dye discoloration of modified Lamiaceae leaves. Mater Res Express. 2021;8:035503. DOI:10.1088/2053-1591/abeb8f.
  • Al-Aoh HA, Aljohani MMH, Darwish AAA, et al. A potentially low-cost adsorbent for methylene blue removal from synthetic wastewater. Desalin Water Treat. 2021;213:431–440.
  • Bani-Atta SA, Al-Aoh HA, Aljohani MMH, et al. Methylene blue sorption by the chemically modified Ocimum basilicum leaves powder. Desalin Water Treat. 2021;222:237–245.
  • Alamrani NA, Al-Aoh HA, Aljohani MMH, et al. Wastewater purification from permanganate ions by sorption on the Ocimum basilicum leaves powder modified by zinc chloride. J Chem. 2021: 1–10. DOI:10.1155/2021/5561829.
  • Al-Aoh HA. Removal of the pigment Congo red from synthetic wastewater with a novel and inexpensive adsorbent generated from powdered Foeniculum vulgare seeds. Processes. 2023;11:446. DOI:10.3390/pr11020446.
  • Bani-Atta SA. Potassium permanganate dye removal from synthetic wastewater using a novel, low–cost adsorbent, modified from the powder of Foeniculum vulgare seeds. Sci Rep. 2022;12:4547. DOI:10.1038/s41598-022-08543-z.
  • Wang C, Wang H. Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater-contribution to sustainability in agroforestry. J Cleaner Prod. 2018;184:921–928.
  • Huang R, Yang J, Cao Y, et al. Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder. Sep Pur Technol. 2022;291:120963. DOI:10.1016/j.seppur.2022.120963.
  • Aljohani MMH, Al-Aoh HA. Adsorptive removal of permanganate anions from synthetic wastewater using copper sulfide nanoparticles. Mater Res Express. 2021;8:035012.
  • Basiri H, Nourmoradi H, Moghadam FM, et al. Removal of aniline as a health-toxic substance from polluted water by aloe vera waste-based activated carbon. Der Pharma Chem. 2015;7:149–155.
  • Aksu Z, Tezer S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 2005;40:1347–1361.
  • Almeida CAP, Debacher NA, Downs AJ, et al. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci. 2009;332(1):46–53.
  • Hameed BH, Ahmad AA. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater. 2009;164:870–875.
  • Azha SF, Ismail S. Stability and durability studies of zwitterionic adsorbent coating for the removal of organic pollutants: chemical and thermal tolerance. Mater Sci Eng. 2020;796:012054. DOI:10.1088/1757-899X/796/1/012054.
  • Wanyonyi WC, Onyari JM, Shiundu PM. Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies. Energy Proc. 2014;50:862–869.
  • Zhang J, Ping Q, Niu M, et al. Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide. Appl Clay Sci. 2013;83:121–116.
  • Krishni RR, Foo KY, Hameed BH. Adsorption of cationic dye using a low-cost biowaste adsorbent: equilibrium, kinetic, and thermodynamic study. Desalin Water Treat. 2014;52:6088–6095.
  • Ceglowski M, Schroeder G. Removal of heavy metal ions with the use of chelating polymers obtained by grafting pyridine–pyrazole ligands onto polymethyl hydrosiloxane. Chem Eng J. 2015;259:885–893.
  • Cardoso NF, Lima EC, Royer B, et al. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive Red 120 dye from aqueous effluents. J Hazard Mater. 2012;241–242:146–153. DOI:10.1016/j.jhazmat.2012.09.026.23040660.
  • Hou HJ, Zhou RH, Wu P, et al. Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem Eng J. 2012;211:336–342.