798
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dithiocarbamate ligands as heavy metal expectorants from aqueous solutions

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Article: 2214750 | Received 16 Jul 2022, Accepted 11 May 2023, Published online: 02 Jun 2023

References

  • Chai, WS, Tan, WG, Munawaroh, HSH, et al. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut. 2021;269:116236. doi:10.1016/j.envpol.2020.116236.
  • Abu-El-Halawa R, Zabin SA. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. J Taibah Univ Sci. 2017;11:57–65. doi:10.1016/j.jtusci.2015.07.002.
  • Niaz AS, Shah Z, Hussain M, et al. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg Chem Appl. 2017;2017:1–12. doi:10.1155/2017/4101735.
  • Ullah H, Noreen S, Rehman A, et al. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arab J Chem. 2017;10:10–18. doi:10.1016/j.arabjc.2013.09.021.
  • Din AU, Abdel-Reheem M, Ullah H, et al. Assessment of heavy metals in onion and potato in the imported and local variety of Pakistan and Afghanistan. Life Sci. 2013;10:198–204.
  • Engwa GA, Ferdinand PU, Nwalo FN, et al. Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the modern world-New Tricks for an Old Dog? London, UK: Intechopen; 2019.
  • Waseem A, Ullah H, Rauf MK, et al. Distribution of natural uranium in surface and groundwater resources: a review. Crit Rev Environ Sci Technol. 2015;45:2391–2423. doi:10.1080/10643389.2015.1025642.
  • Ullah H, Rehman A, Ahmad I, et al. Estimation of uranium concentration in drinking water sources of Tehsil Takht-e-Nasrati, District Karak, Khyber Pakhtunkhwa, Pakistan using fission-track technique. J Chem Soc Pak. 2013;35:999–1003.
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manag. 2011;92:407–418. doi:10.1016/j.jenvman.2010.11.011.
  • Pohl A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Wat Air Soil Poll. 2020;231:1–17. doi:10.1007/s11270-020-04863-w.
  • Hadian M, Hadian M. Comparison of Spiegler-Kedem combined with film theory model and original SK model. Desalin Water Treat. 2022;272:1–5.
  • Shahid M, Pinelli E, Dumat C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater. 2012;219-220:1–12. doi:10.1016/j.jhazmat.2012.01.060.
  • Hayat F, Niaz AS, Bélanger-Gariepy F, et al. Antimony(III) dithiocarbamates: structural studies and exploration of the rare Sb···Sb interaction. Inorg Chem Commun. 2022;146:110148. doi:10.1016/j.inoche.2022.110148.
  • Ul Ain N, Aamir A, Khan Y, et al. Catalytic and photocatalytic efficacy of hexagonal CuS nanoplates derived from copper(II) dithiocarbamate. Mater Chem Phys. 2020;242:122408. doi:10.1016/j.matchemphys.2019.122408.
  • Imran M, Kondratyuk T, Bélanger-Gariepy F. New ternary platinum(II) dithiocarbamates: synthesis, characterization, anticancer, DNA binding and DNA denaturing studies. Inorg Chem Commun. 2019;103:12–20. doi:10.1016/j.inoche.2019.02.007.
  • Imran M, Rehman Z, Hogarth G, et al. Two new monofunctional platinum(II) dithiocarbamate complexes: phenanthriplatin-type axial protection, equatorial-axial conformational isomerism, and anticancer and DNA binding studies. Dalton trans. 2020;49:15385–15396. doi:10.1039/D0DT03018J.
  • Bai L, Hu H, Fu W, et al. Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J Hazard Mater. 2011;195:261–275. doi:10.1016/j.jhazmat.2011.08.038.
  • Fu H, Lv X, Yang Y, et al. Removal of micro complex copper in aqueous solution with a dithiocarbamate compound. Desalin Water Treat. 2012;39:103–111. doi:10.1080/19443994.2012.669165.
  • Li Z. Synthesis of a carbamide-based dithiocarbamate chelator for the removal of heavy metal ions from aqueous solutions. J Ind Eng Chem. 2014;20:586–590. doi:10.1016/j.jiec.2013.05.018.
  • Armarego W, Chai C. Purification of laboratory chemicals, butterworth. 5th ed. Oxford: Oxford University Press; 2003.
  • Hayat F, Khan MH, Zia-ur-Rehman, Two new heteroleptic ruthenium (II) dithiocarbamates: synthesis, characterization, DFT calculation and DNA binding. J Coord Chem. 2017;70:279–295. doi:10.1080/00958972.2016.1255328.
  • Arora A, Arora C. Synthesis of transition metal diethyldithiocarbamates and their effect on nodulation and other growth characters in mungbean, vigna radiata. Asian J Chem. 2003;15:144–150.
  • Al-Obaidy GS, Ibraheem KR, Mesher MF. Metal complexes derived from dithiocarbamate ligand: formation, spectral characterization and biological activity. Sys Rev Pharm. 2020;11:360–368. doi:10.31838/srp.2020.6.57.
  • Pages A, Casaş J, Sanchez A, et al. J Inorg Biochem. 1985;25:35–42. doi:10.1016/0162-0134(85)83005-1.
  • Kane S, Lazo P, Ylli F, et al. Separation of heavy metal from water samples, the study of the synthesis of complex compounds of heavy metal with dithiocarbamates. J Environ Sci Health B, Part A. 2016;51:335–340. doi:10.1080/10934529.2015.1109408.
  • Ahmed, S. A. Synthesis and characterization of new ligand of Dithiocarbamate derived from “2-Aminopyridine” with some metal ions. Karbala J Pharm Sci. 2017;12:84–98.
  • Liu LK, Cheng TH, Young DS, et al. Trace analysis of heavy metals with two new disodium bisdithiocarbamates. J Chin Chem Soc. 1995;42:773–782. doi:10.1002/jccs.199500104.
  • Ayalew ZM, Zhang X, Guo X, et al. Removal of cu, ni and Zn directly from acidic electroplating wastewater by oligo-ethyleneamine dithiocarbamate (OEDTC). Sep Purif Technol. 2020;248:117114. doi:10.1016/j.seppur.2020.117114.
  • Zheng Hl, Sun Xp, He Q, et al. Synthesis and trapping properties of dithiocarbamate macromolecule heavy-metal flocculants. J Appl Polym Sci. 2008;110:2461–2466. doi:10.1002/app.28526.
  • Nzeneri, JU, Ndukwe, G I, Abayeh, OJ. Synthesis and metal removal efficiency of sodium phenyldithiocarbamate and sodium cyclohexyldithiocarbamate ligands. J. Appl. Chem. 2018;11:72–82. doi:10.9790/5736-1101017282.
  • Liu L, Wu J, Li X, Ling Y. Synthesis of poly (dimethyldiallylammonium chloride-co-acrylamide)-graft-triethylenetetramine–dithiocarbamate and its removal performance and mechanism of action towards heavy metal ions. Sep Purif Technol. 2013;103:92–100. doi:10.1016/j.seppur.2012.10.028.
  • Kalra, Y. Handbook of reference methods for plant analysis. Boca Raton, FL: Taylor & Francis Group; 1998. p. 85–88.
  • Okawara R, Webster DE, Rochow EG. The infrared spectra of the methylacetoxysilanes and some methyltin carboxylates. The configuration of the trimethyltin and the dimethyltin cations. J Am Chem Soc. 1960;82:3287–3290. doi:10.1021/ja01498a013.
  • Qin L, Ge Y, Beng B. Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water. J Taiwan Inst Chem Eng. 2017;71:84–90. doi:10.1016/j.jtice.2016.11.012.
  • Ali S, Rehman Z, Zia-ur-Rehman, et al. New homobimetallic organotin(IV) dithiocarbamates as potent antileishmanial agents. J Coord Chem. 2014;67:3414–3430. doi:10.1016/j.jece.2018.03.029.
  • Houari B, Louhibi S, Tizaoui K, et al. New synthetic material removing heavy metals from aqueous solutions and wastewater. Arab J Chem. 2019;12:5040–5048. doi:10.1016/j.arabjc.2016.11.010.
  • Ullah H, Previtali V, Mihigo HB, et al. Structureactivity relationships of new Organotin (IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur J Med Chem. 2019;181:111544. doi:10.1016/j.ejmech.2019.07.047.
  • Ullah H, Twamley B, Waseem A, et al. Tin···Oxygen Tetrel Bonding: A Combined Structural, Spectroscopic, and Computational Study. Cryst Growth Des. 2017;17:4021–4027. doi:10.1021/acs.cgd.7b00678.
  • Coucouvanis D The chemistry of the dithioacid and 1,1-dithiolate complexes,1968–1977. Prog Inorg Chem. 1979;26:301–449.
  • Amir MK, Hayat F, Khan SZ, et al. Monofunctional platinum (II) dithiocarbamate complexes: synthesis, characterization and anticancer activity. RSC Adv. 2016;6: 110517–110524. doi:10.1039/C6RA19469A.
  • Angeloski A, Baker AT, Bhadbhade M, et al. Bis (κ2s, s-di (isopropyl) dithiocarbamato) Nickel (II): Anagostic C–H···Ni interactions and physical properties. J Mol Struct. 2016;1113:127–132. doi:10.1016/j.molstruc.2016.02.028.
  • Angeloski A, Gentle AR, Scott JA, et al. From lead (II) dithiocarbamate precursors to a fast response PbS positive temperature coefficient thermistor. Inorg Chem. 2018;57:2132–40. doi:10.1021/acs.inorgchem.7b03009.
  • Sainorudin, MH, Sidek, NM, Ismail, N, et al. Synthesis, Characterization and Biological Activity of Organotin (IV) Complexes featuring di-2-ethylhexyldithiocarbamate and N-methylbutyldithiocarbamate as Ligands. J Chem Sci. 2015;2:1–9. doi:10.7603/s40837-015-0002-3.
  • Yadav MK, Rajput G, Gupta AN, et al. Exploring the coordinative behaviour and molecular architecture of new PhHg(II)/Hg(II) dithiocarbamate complexes. Inorganica Chim Acta. 2014;421:210–217. doi:10.1016/j.ica.2014.05.031.
  • Sharma C, Kumar N, Khandpal M, et al. Studies on the preparation and characterization of bis-dithiocarbamato derivatives of di-n-butyl-and di-n-hexyl Sn (IV). J inorg Nucl. 1981;43:923–930. doi:10.1016/0022-1902(81)80151-0.
  • Nabipour H, Ghammamy S, Ashuri S, et al. Synthesis of a new dithiocarbamate compound and study of its biological properties. J Org Chem. 2010;2:75–80. doi:10.1039/C6RA19469A.
  • Ramos LA, Cavalheiro ÉTG. Preparation, characterization and thermal decomposition of sodium and potassium salts of dithiocarbamate. Braz J Therm Anal. 2013;2:34–38. doi:10.1016/j.molstruc.2016.02.028.
  • Oluwalana AE, Ajibade PA. Synthesis and crystal structures of Pb (II) dithiocarbamates complexes: Precursors for PbS nanophotocatalyst. J Sulphur Chem. 2020;41:182–199. doi:10.1080/17415993.2019.1703986.
  • Hayat, F, Shah, SNA., Zia-ur-Rehman, et al. Antimony (III) dithiocarbamates: Crystal structures, supramolecular aggregations, DNA binding, antioxidant and antileishmanial activities. Polyhedron, 2021;194:114909. doi:10.1016/j.poly.2020.114909.
  • Kanchi S, Singh P, Bisetty K. Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab J Chem. 2014;7:11–25. doi:10.1016/j.arabjc.2013.04.026.
  • Chen H, Zhao Y, Yang Q, et al. Preparation of poly-ammonium/sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments. J Environ Chem Eng. 2018;6:2344–2354. doi:10.1016/j.jece.2018.03.029.
  • Jeragh B, El-Asmy AA. Structure and spectroscopic studies of homo-and heterometallic complexes of adipic acid dihydrazide. Spectrochim Acta A: Mol Biomol Spectrosc. 2014;125:25–35. doi:10.1016/j.saa.2014.01.071.
  • Ge Y, Li Z, Xiao D, et al. Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. J Ind Eng Chem. 2014;20:1765–1771. doi:10.1016/j.jiec.2013.08.030.
  • Ho TL. Hard and soft acids and bases principle in organic chemistry. New York: Academic Press; 2012.
  • Usman ARA. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in a new valley, in Egypt. Geoderma. 2008;144:334–343. doi:10.1016/j.geoderma.2007.12.004.
  • McBride M. Reactions controlling heavy metal solubility in soils. Advances in soil science. New York: Springer; 1989. p. 1–15.
  • Huheey JE, Keiter EA, Keiter RL, et al. Inorganic chemistry: principles of structure and reactivity. New York: HarperCollins; 1993.
  • Allen HE, Huang CP, Bailey GW, et al. Metal speciation and contamination of soil. Boca Raton, FL: Lewis Publishers; 1995.
  • Förstner U. Land contamination by metals: global scope and magnitude of problem. In: Metal speciation and contamination of soil. New York: Lewis Publishers; 1995. p. 1–33.
  • Mattigod SV, Parker K, Fryxell GE. Correlation of heavy metal binding capacity of thiol-samms using the misono softness parameter. Inorg Chem Commun. 2006;9:96–98.
  • Kang T, Park Y, Yi J. Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica. Ind Eng Chem Res. 2004;43:1478–1484.
  • Cheng X, Cheng R, Ou S, et al. Synthesis and adsorption performance of dithiocarbamate-modified glycidyl methacrylate starch. Carbohydr Polym. 2013;96:320–325.
  • Wan MW, Kan CC, Ibarra-Buscano S, et al. Comparative adsorption of Cd2+, Cu2+, Ni2+, Pb2+ and Zn2+ in aqueous medium onto chitosan-montmorillionite composite beads. Conference: 5th Cross-Straits Drinking Water Symposium, At Macao, China. 2009.
  • Yan P, Ye M, Sun S, et al. Removal performances and mechanisms of action towards ethylenediaminetetraacetic acid nickel (II) salt by dithiocarbamate compounds having different carbon chain lengths. J Clean Prod. 2016;122:308–314. doi:10.1016/j.jclepro.2016.02.037.
  • Dai Y, Niu L, Zou J, et al. Preparation of core-shell magnetic Fe3O4@SiO2-dithiocarbamate nanoparticle and its application for the Ni2+, Cu2+ removal. Chin Chem Lett. 2018;29:887–891. doi:10.1016/j.cclet.2017.11.029.
  • Maurya VK, Singh RP, Prasad LB. Comparative evaluation of trace heavy metal ions in water sample using complexes of dithioligands by flame atomic absorption spectrometry. Orient J Chem. 2018;34:100. doi:10.13005/ojc/340111.