821
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ferro-hydrodynamic induced convection flow and heat transfer of nanofluids in a corrugated wall enclosure

, , , & ORCID Icon
Article: 2215675 | Received 10 Feb 2023, Accepted 15 May 2023, Published online: 09 Jun 2023

References

  • Ma Y, Mohebbi R, Rashidi MM, et al. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019;130:123–134. doi:10.1016/j.ijheatmasstransfer.2018.10.072.
  • Bondarenko DS, Sheremet MA, Oztop HF, et al. Natural convection of Al2O3/H2O nanofluid in a cavity with a heat-generating element. Heatline visualization. Int J Heat Mass Transf. 2019;130:564–574. doi:10.1016/j.ijheatmasstransfer.2018.10.091.
  • Alsabery AI, Sheremet MA, Chamkha AJ, et al. Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int J Mech Sci. 2019;150:637–655. doi:10.1016/j.ijmecsci.2018.10.069.
  • Jalili B, Aghaee N, Jalili P, et al. Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Studies in Thermal Engineering. 2022;35:102086, doi:10.1016/j.csite.2022.102086.
  • Jalili P, Kazerani K, Jalili B, et al. Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles. Case Studies in Thermal Engineering. 2022;36:102209., doi:10.1016/j.csite.2022.102209.
  • Dinarvand S, Berrehal H, Pop I, et al. Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem. Int J Numer Methods Heat Fluid Flow. 2023;33(3):1144–1160. doi:10.1108/HFF-08-2022-0489.
  • Sheremet MA, Pop I, Rahman MM. Three-dimensional natural convection in a porous enclosure filled with a nanofluid using buongiorno’s mathematical model. Int J Heat Mass Transf. 2015;82:396–405. doi:10.1016/j.ijheatmasstransfer.2014.11.066.
  • Ibrahim M, Berrouk AS, Saeed T, et al. Lattice Boltzmann-based numerical analysis of nanofluid natural convection in an inclined cavity subject to multiphysics fields. Sci Rep. 2022;12:1–8. doi:10.1038/s41598-021-99269-x.
  • Paroncini M, Corvaro F, Montucchiari A, et al. A numerical and experimental analysis on natural convective heat transfer in a square enclosure with partially active side walls. Exp Therm Fluid Sci. 2012;36:118–125. doi:10.1016/j.expthermflusci.2011.09.004.
  • Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numerical Heat Transfer, Part A: Applications. 2016;69(10):1186–1200. doi:10.1080/10407782.2015.1125709.
  • Ghalambaz M, Sabour M, Sazgara S, et al. 2020, Insight into the dynamics of ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) nanofluids inside a hexagonal cavity in the presence of a non-uniform magnetic field. J Magn Magn Mater. 2020; 497:166024. doi:10.1016/j.jmmm.2019.166024
  • Sami S. Impact of magnetic field on the enhancement of performance of thermal solar collectors using nanofluids. Int J Ambient Energy. 2019;40(8):875–884. doi:10.1080/01430750.2018.1437561.
  • Ali MM, Akhter R, Alim MA. MHD natural convection and entropy generation in a grooved enclosure filled with nanofluid using two-component non-homogeneous model. SN Appl Sci. 2020;2:1–11. doi:10.1007/s42452-019-1805-5.
  • Sathiyamoorthy M, Chamkha AJ. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int J Numer Methods Heat Fluid Flow. 2012;22(5):677–698. doi:10.1108/09615531211231307.
  • Jalili B, Sadighi S, Jalili P, et al. Numerical analysis of MHD nanofluid flow and heat transfer in a circular porous medium containing a Cassini oval under the influence of the Lorentz and buoyancy forces. Heat Transfer. 2022;51(7):6122–6138. doi:10.1002/htj.22582.
  • Jalili B, Jalili P, Sadighi S, et al. Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity. Chin J Phys. 2021;71:136–150. doi:10.1016/j.cjph.2020.02.034.
  • Jalili P, Azar AA, Jalili B, et al. Heat transfer analysis in cylindrical polar system with magnetic field: A novel hybrid analytical and numerical technique. Case Stud Therm Eng. 2022;40:102524. doi:10.1016/j.csite.2022.102524.
  • Jalili B, Ganji AD, Jalili P, et al. Thermal analysis of Williamson fluid flow with Lorentz force on the stretching plate. Case Studies in Thermal Engineering. 2022;39:102374. doi:10.1016/j.csite.2022.102374.
  • Jalili P, Narimisa H, Jalili B, et al. A novel analytical approach to micro-polar nanofluid thermal analysis in the presence of thermophoresis, Brownian motion and Hall currents. Soft Comput. 2023;27(2):677–689. doi:10.1007/s00500-022-07643-2.
  • Dinarvand S, Rostami MN. Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: A novel hybridity model with analysis of shape factor effects. Proc Inst Mech Eng Part E J Process Mech Eng. 2020;234(2):193–205. doi:10.1177/0954408920906274.
  • Izady M, Dinarvand S, Pop I, et al. Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: A development on Falkner–Skan problem. Chin J Phys. 2021;74:406–420. doi:10.1016/j.cjph.2021.10.018.
  • Berrehal H, Dinarvand S, Khan I. Mass-based hybrid nanofluid model for entropy generation analysis of flow upon a convectively-warmed moving wedge. Chin J Phys. 2022;77:2603–2616. doi:10.1016/j.cjph.2022.04.017.
  • Dinarvand S, Nejad AM. Off-centered stagnation point flow of an experimental-based hybrid nanofluid impinging to a spinning disk with low to high non-alignments. Int J Numer Methods Heat Fluid Flow. 2021;32(8):2799–2818.
  • Huang Y, Ma M, Xu M, et al. Numerical study of natural convective heat transfer of nanofluids within a porous corrugated triangular cavity in the presence of a magnetic field. Numerical Heat Transfer, Part A: Applications. 2022;82(11):716–742. doi:10.1080/10407782.2022.2083867.
  • Alsabery AI, Vaezi M, Tayebi T, et al. Nanofluid mixed convection inside wavy cavity with heat source: A non-homogeneous study. Case Studies in Thermal Engineering. 2022;34:102049. doi:10.1016/j.csite.2022.102049.
  • Mahesh A, Raju CSK, Babu MJ, et al. Entropy generation optimization in an unsteady hybrid nanofluid flow between two rotating disks: a numerical bioconvection model. Waves Random Complex Media. 2022: 1–32. doi:10.1080/17455030.2022.2142320.
  • Sannad M, Hussein AK, Abidi A, et al. Numerical study of MHD natural convection inside a cubical cavity loaded with copper-water nanofluid by using a nonhomogeneous dynamic mathematical model. Mathematics. 2022;10(12):2072. doi:10.3390/math10122072.
  • Liu Z, Yan Y, Fu R, et al. Enhancement of solar energy collection with magnetic nanofluids. Therm Sci Eng Prog. 2018;8:130–135. doi:10.1016/j.tsep.2018.08.015.
  • Gan Jia Gui N, Stanley C, Nguyen NT, et al. Ferrofluids for heat transfer enhancement under an external magnetic field. Int J Heat Mass Transf. 2018;123:110–121. doi:10.1016/j.ijheatmasstransfer.2018.02.100.
  • Ren J, Jin Z, Huang X, et al. A lattice Boltzmann method for two-phase nanofluid under variable non-uniform magnetic fields. J Appl Phys. 2022;132(17):174703.
  • Ashorynejad HR, Shahriari A. MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 2018;9:440–455.
  • Szabo PSB, Früh W-G. The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. J Magn Magn Mater. 2018;447:116–123. doi:10.1016/j.jmmm.2017.09.028.
  • Javed T, Siddiqui MA. Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int J Therm Sci. 2018;125:419–427. doi:10.1016/j.ijthermalsci.2017.12.009.
  • Bahiraei M, Hangi M, Rahbari A. A two-phase simulation of convective heat transfer characteristics of water–Fe3O4 ferrofluid in a square channel under the effect of permanent magnet. Appl Therm Eng. 2019;147:991–997. doi:10.1016/j.applthermaleng.2018.11.011.
  • Mohammadpourfard M, Aminfar H, Ahangar Zonouzi S. Numerical investigation of the magnetic field effects on the entropy generation and heat transfer in a nanofluid filled cavity with natural convection. Heat Transf-Asian Res. 2017;46(5):409–433. doi:10.1002/htj.21222.
  • Abdi H, Motlagh SY, Soltanipour H. Numerical study of two-phase flow in a square cavity under magnetic field of parallel wires. Meccanica. 2021;56(8):2005–2020. doi:10.1007/s11012-021-01347-x.
  • Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–1049. doi:10.1016/j.ijheatmasstransfer.2017.04.070.
  • Biswas N, Mondal MK, Mandal DK, et al. A narrative loom of hybrid nanofluid-filled wavy walled tilted porous enclosure imposing a partially active magnetic field. Int J Mech Sci. 2022;217:107028. doi:10.1016/j.ijmecsci.2021.107028.
  • Mondal MK, Biswas N, Datta A, et al. Magneto-hydrothermal convective dynamics of hybrid nanofluid-packed partially cooled porous cavity: effect of half-sinusoidal heating. J Therm Anal Calorim. 2023;148(9):3903–3928. doi:10.1007/s10973-023-11959-y.
  • Biswas N, Mandal DK, Manna NK, et al. Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: cleaner energy application. Energy. 2023;263:125775. doi:10.1016/j.energy.2022.125775.
  • Chatterjee D, Biswas N, Manna NK, et al. Effect of discrete heating-cooling on magneto-thermal-hybrid nanofluidic convection in cylindrical system. Int J Mech Sci. 2023;238:107852. doi:10.1016/j.ijmecsci.2022.107852.
  • Chatterjee D, Biswas N, Manna NK, et al. Magneto-nanofluid flow in cylinder-embedded discretely heated-cooled annular thermal systems: conjugate heat transfer and thermodynamic irreversibility. J Magn Magn Mater. 2023;569:170442. doi:10.1016/j.jmmm.2023.170442.
  • Saha A, Manna NK, Ghosh K, et al. Analysis of geometrical shape impact on thermal management of practical fluids using square and circular cavities. The European Physical Journal Special Topics. 2022;231(13–14):2509–2537. doi:10.1140/epjs/s11734-022-00593-8.
  • Amani M, Amani P, Bahiraei M, et al. Latest developments in nanofluid flow and heat transfer between parallel surfaces: A critical review. Adv Colloid Interface Sci. 2021;294:102450. doi:10.1016/j.cis.2021.102450.
  • Garoosi F, Bagheri G, Rashidi MM. Two phase simulation of natural convection and mixed convection of the nanofluid in a square cavity. Powder Technol. 2015;275:239–256. doi:10.1016/j.powtec.2015.02.013.
  • Godson L, Raja B, Mohan Lal D, et al. Enhancement of heat transfer using nanofluids – an overview. Renewable Sustainable Energy Rev. 2010;14(2):629–641. doi:10.1016/j.rser.2009.10.004.
  • Sheremet MA, Pop I. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2014;79:137–145. doi:10.1016/j.ijheatmasstransfer.2014.07.092.
  • Soltanipour H. Numerical analysis of two-phase ferrofluid forced convection in an annulus subjected to magnetic sources. Appl Therm Eng. 2021;196:117278. doi:10.1016/j.applthermaleng.2021.117278.
  • Dawar A, Wakif A, Thumma T, et al. Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy. Int Commun Heat Mass Transfer. 2022;130:105800. doi:10.1016/j.icheatmasstransfer.2021.105800.
  • Sheikholeslami M, Ganji D. Ferrofluid convective heat transfer under the influence of external magnetic source. Alexandria Eng J. 2018;57(1):49–60. doi:10.1016/j.aej.2016.11.007.
  • Buongiorno J. Convective transport in nanofluids. J Heat Transfer ASME. 2006;128:240–250. doi:10.1115/1.2150834
  • Ghalambaz M, Zadeh SMH, Mehryan S, et al. Non-Newtonian behavior of an electrical and magnetizable phase change material in a filled enclosure in the presence of a non-uniform magnetic field. Int Commun Heat Mass Transfer. 2020;110:104437. doi:10.1016/j.icheatmasstransfer.2019.104437.
  • Ghalambaz M, Hashem Zadeh SM, Mehryan SAM, et al. Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Appl Math Model. 2020;77:1936–1953. doi:10.1016/j.apm.2019.09.015.
  • Mehryan SAM, Tahmasebi A, Izadi M, et al. Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. Int J Heat Mass Transf. 2020;149:119184. doi:10.1016/j.ijheatmasstransfer.2019.119184.
  • Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–282. doi:10.1016/j.amc.2016.11.025.
  • Sheikholeslami M, Hayat T, Alsaedi A. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf. 2017;106:745–755. doi:10.1016/j.ijheatmasstransfer.2016.09.077.
  • Reddy JN. Introduction to the finite element method. New York: McGraw-Hill Education; 2019.
  • Löhner R. Applied computational fluid dynamics techniques: an introduction based on finite element methods. 2nd ed. Hoboken: John Wiley & Sons; 2008.
  • Zienkiewicz OC, Taylor RL, Nithiarasu P. The finite element method for fluid dynamics. 7th ed. Oxford: Butterworth-Heinemann; 2014.
  • Connor J, Brebbia CA. Finite element techniques for fluid flow. London: Newnes; 2013.
  • Pepper D. The intermediate finite element method: fluid flow and heat transfer applications. New York: Routledge; 2017.
  • Biswas N, Mondal MK, Manna NK, et al. Implementation of partial magnetic fields to magneto-thermal convective systems operated using hybrid-nanoliquid and porous media. Proc Inst Mech Eng Part C J Mech Eng Sci. 2022;236(10):5687–5704. doi:10.1177/09544062211060168.
  • Manna NK, Mondal MK, Biswas N. A novel multi-banding application of magnetic field to convective transport system filled with porous medium and hybrid nanofluid. Phys Scr. 2021;96(6):065001. doi:10.1088/1402-4896/abecbf.
  • Dutta S, Pati S, Baranyi L. Numerical analysis of magnetohydrodynamic natural convection in a nanofluid filled quadrantal enclosure. Case Studies in Thermal Engineering. 2021;28:101507. doi:10.1016/j.csite.2021.101507.
  • Sajjadi H, Delouei AA, Sheikholeslami M, et al. Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann method. Physica A. 2019;515:474–496. doi:10.1016/j.physa.2018.09.164.
  • Manna NK, Biswas N. Magnetic force vectors as a new visualization tool for magnetohydrodynamic convection. Int J Therm Sci. 2021;167:107004. doi:10.1016/j.ijthermalsci.2021.107004.