856
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile fabrication of graphene oxide/zinc selenide nanocomposite for efficient oxygen evolution reaction

, , , , , & show all
Article: 2225028 | Received 15 Feb 2023, Accepted 06 Jun 2023, Published online: 22 Jun 2023

References

  • Ganguly S, Das P, Banerjee S, et al. Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Funct Compos Struct. 2019;1:022001
  • Holdren JP. Science and technology for sustainable well-being. Science. 2008;319:424–434.
  • Stanislaus A, Marafi A, Rana MS. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today. 2010;153:1–68.
  • Islim OF, Cagiltay K. EURASIA J Math Sci Technol Edu. 2016;12:559–567.
  • Du C, Li P, Zhuang Z, et al. Highly porous nanostructures: rational fabrication and promising application in energy electrocatalysis. Coord Chem Rev. 2022;466:214604.
  • Muritala IK, Guban D, Roeb M, et al. High temperature production of hydrogen: assessment of non-renewable resources technologies and emerging trends. Int J Hydrogen Energy. 2020;45:26022–26035.
  • Amin M, Shah HH, Fareed AG, et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int J Hydrogen Energy. 2022;7:33112–33134.
  • Capellán-Pérez I, Mediavilla M, de Castro C, et al. Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy. 2014;77:641–666.
  • Zou C, Zhao Q, Zhang G, et al. Energy revolution: from a fossil energy era to a new energy era. Natural Gas Industry B. 2016;3:1–11.
  • Siddik M, Islam M, Zaman A, et al. Int J Energy Environ Econ. 2021;28:103–119.
  • Xu W, Wu K, Wu Y, et al. High-efficiency water splitting catalyzed by NiMoO4 nanorod arrays decorated with vacancy defect-rich NiTex and MoOy layers. Electrochim Acta. 2023;439:141712.
  • Zhang L, Liang J, Yue L, et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Research Energy. 2022;1:e9120028.
  • Fan F, Hui Y, Devasenathipathy R, et al. Composition-adjustable Mo6Co6C2/Co@carbon nanocage for enhanced oxygen reduction and evolution reactions. J Colloid Interface Sci. 2023;636:450–458.
  • Zhou S, Tong Q, Yu S, et al. Role of non-fossil energy in meeting China’s energy and climate target for 2020. Energy Policy. 2012;51:14–19.
  • Winter C-J. Hydrogen energy — abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrogen Energy. 2009;34:S1–S52.
  • van Biert L, Godjevac M, Visser K, et al. A review of fuel cell systems for maritime applications. J Power Sources. 2016;327:345–364.
  • Chen Z, Wei W, Ni B-J. Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr Opin Green Sust Chem. 2021;27:100398.
  • McHugh PJ, Stergiou AD, Symes MD. Decoupled electrochemical water splitting: from fundamentals to applications. Adv Energy Mater. 2020;10:2002453.
  • Huang J, Wang Y. Efficient renewable-to-hydrogen conversion via decoupled electrochemical water splitting. Cell Rep Phy Sci. 2020;1:100138.
  • Youngblood WJ, Lee S-HA, Maeda K, et al. Visible light water splitting using Dye-sensitized oxide semiconductors. Acc Chem Res 2009;42:1966–1973.
  • Fan F, Huang Q, Devasenathipathy R, et al. Composite-structure-defined nitrogen-doped carbon nanocage embedded Co/CoxP for enhanced oxygen reduction and evolution reactions. Electrochim Acta. 2023;437:141514.
  • Zheng F, Zhang W, Zhang X, et al. Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv Funct Mater. 2021;31:2103318.
  • Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem. 2017;1:1–13.
  • Pindur U, Lutz G, Otto C. Acceleration and selectivity enhancement of diels-alder reactions by special and catalytic methods. Chem Rev. 1993;93:741–761.
  • Li W, Zhang H, Hong M, et al. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. Chem Eng J. 2022;431:134072.
  • Wang VCC. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems. Phys Chem Chem Phys. 2016;18:22364–22372.
  • Dotan H, Landman A, Sheehan SW, et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nature Energy. 2019;4:786–795.
  • Chen S, Kucernak A. Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J Phys Chem B. 2004;108:3262–3276.
  • Chen JG. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf Sci Rep. 1997;30:1–152.
  • Sun Y, Zhang T, Li C, et al. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J Mater Chem A. 2020;8:13415–13436.
  • Theerthagiri J, Lee SJ, Murthy AP, et al. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr Opin Solid State Mater Sci. 2020;24:100805.
  • Zhang P, Cao M, Feng Y, et al. Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices. Carbon. 2021;182:404–412.
  • Yang Y, Kang Y, Zhao H, et al. An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction. Small. 2020;16:1905083.
  • Zhao J, Chen J, Xu S, et al. CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J Mater Chem A. 2013;1:8836–8843.
  • Zheng W, Li Y, Lee LYS. Earth-abundant metal-based nanomaterials for electrochemical water splitting. In: Wong WY, Dong Q, editors. Functional nanomaterials: synthesis, properties, and applications. Hoboken (NJ): Wiley; 2022. p. 1–40.
  • Arif M, Yasin G, Shakeel M, et al. Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chem–Asian J. 2018;13:1045–1052.
  • Shi X, Wang H. Electrochemical transformation of renewable compounds. (FL): CRC Press; 2022, p. 195–236.
  • Zhou T, Bai J, Gao Y, et al. Selenide-based 3D folded polymetallic nanosheets for a highly efficient oxygen evolution reaction. J Colloid Interface Sci. 2022;615:256–264.
  • Tang S, Zhou Y, Lu X, et al. Surface/interface engineering for fabricating hierarchical Ir doped NiMoO4 covered by CoMn layered double hydroxide toward oxygen evolution reaction. J Alloys Compd. 2022;924:166415.
  • Kumar A, Sharma K, Dixit AR. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci. 2019;54:5992–6026.
  • Wu X, Mu F, Zhao H. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J Mater Sci Technol. 2020;55:16–34.
  • Son DI, Kwon BW, Park DH, et al. Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol. 2012;7:465–471.
  • Ramírez C, Belmonte M, Miranzo P, et al. Applications of ceramic/graphene composites and hybrids. Materials. 2021;14:2071.
  • Norby P. Hydrothermal conversion of zeolites: an in situ synchrotron X-ray powder diffraction study. J Am Chem Soc 1997;119:5215–5221.
  • Kirsanova M, Nemchinov A, Hewa-Kasakarage NN, et al. Synthesis of ZnSe/CdS/ZnSe nanobarbells showing photoinduced charge separation. Chem Mater. 2009;21:4305–4309.
  • Neyerlin K, Bugosh G, Forgie R, et al. Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. J Electrochem Soc. 2009;156:B363.
  • Jin H, Ruqia B, Park Y, et al. Nanocatalyst design for long-term operation of proton/anion exchange membrane water electrolysis. Adv Energy Mater. 2021;11:2003188.