557
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of physical and radiobiological models on evaluation of radiotherapy treatment fractionation schedules for GBM brain tumours

, , , & ORCID Icon
Article: 2228020 | Received 18 Jan 2023, Accepted 15 Jun 2023, Published online: 28 Jun 2023

References

  • Joiner MC, van der Kogel AJ. Basic clinical radiobiology. CRC Press; 2018.
  • Maringe C, Spicer J, Morris M, et al. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. Lancet Oncol. 2020;21(8):1023–1034. doi:10.1016/S1470-2045(20)30388-0
  • Hashemi FA, Barzegartahamtan M, Mohammadpour RA, et al. Comparison of conventional and hypofractionated radiotherapy in breast cancer patients in terms of 5-year survival, locoregional recurrence, late skin complications and cosmetic results. APJCP. 2016;17(11):4819.
  • Ågren A, Brahme A, Turesson I. Optimization of uncomplicated control for head and neck tumors. Int J Radiat Oncol Biol Phys. 1990;19(4):1077–1085. doi:10.1016/0360-3016(90)90037-K
  • Chaikh A, Docquière N, Bondiau P-Y, et al. Impact of dose calculation models on radiotherapy outcomes and quality adjusted life years for lung cancer treatment: do we need to measure radiotherapy outcomes to tune the radiobiological parameters of a normal tissue complication probability model? Transl Lung Cancer Res. 2016;5(6):673. doi:10.21037/tlcr.2016.11.04
  • Chargari C, Magne N, Guy J-B, et al. Optimize and refine therapeutic index in radiation therapy: overview of a century. Cancer Treat Rev. 2016;45:58–67. doi:10.1016/j.ctrv.2016.03.001
  • Brand D, Kirby AM, Yarnold JR, et al. How low can you go? The radiobiology of hypofractionation. Clin Oncol. 2022;34(5):280–287. doi:10.1016/j.clon.2022.02.009
  • Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA. 2000;97(12):6242–6244. doi:10.1073/pnas.97.12.6242
  • Iocolano M, Wild AT, Hannum M, et al. Hypofractionated vs. conventional radiation therapy for stage III non-small cell lung cancer treated without chemotherapy. Acta Oncol. 2020;59(2):164–170. doi:10.1080/0284186X.2019.1675907
  • Wang S-L, Fang H, Song Y-W, et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: a randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2019;20(3):352–360. doi:10.1016/S1470-2045(18)30813-1
  • Liu L, Yang Y, Gao Q, et al. Comparing hypofractionated to conventional fractionated radiotherapy in postmastectomy breast cancer: a meta-analysis and systematic review. Radiat Oncol. 2020;15(1):17. doi:10.1186/s13014-019-1449-z
  • Powell AC, Rogstad TL, Jacob NM, et al. The association between use of hypofractionation and treatment completion among recipients of radiation therapy post-mastectomy. Pract Radiat Oncol. 2020;10(4):e244–e249. doi:10.1016/j.prro.2019.10.009
  • Reddy K, Damek D, Gaspar LE, et al. Phase II trial of hypofractionated IMRT with temozolomide for patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2012;84(3):655–660. doi:10.1016/j.ijrobp.2012.01.035
  • Alfonso L, Herrero JMA, Nunez L. A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans. Radiat Oncol. 2015;10(1):1–9. doi:10.1186/s13014-015-0569-3
  • Feuvret L, Noël G, Mazeron J-J, et al. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64(2):333–342. doi:10.1016/j.ijrobp.2005.09.028
  • Oermann E, Collins BT, Erickson KT, et al. Cyberknife® enhanced conventionally fractionated chemoradiation for high grade glioma in close proximity to critical structures. J Hematol Oncol. 2010;3(1):1–9. doi:10.1186/1756-8722-3-22
  • Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30(5):979–985. doi:10.1118/1.1568978
  • Emami B. Tolerance of normal tissue to therapeutic radiation. Rep Radiother Oncol. 2013;1(1):123–127. https://applications.emro.who.int/imemrf/Rep_Radiother_Oncol/Rep_Radiother_Oncol_2013_1_1_35_48.pdf
  • Yoon M, Park SY, Shin D, et al. A new homogeneity index based on statistical analysis of the dose–volume histogram. J Appl Clin Med Phys. 2007;8(2):9–17. doi:10.1120/jacmp.v8i2.2390
  • Dhabaan A, Elder E, Schreibmann E, et al. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys. 2010;11(3):197–211. doi:10.1120/jacmp.v11i3.3040
  • Knöös T, Kristensen I, Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys. 1998;42(5):1169–1176. doi:10.1016/S0360-3016(98)00239-9
  • Menhel J, Levin D, Alezra D, et al. Assessing the quality of conformal treatment planning: a new tool for quantitative comparison. Phys Med Biol. 2006;51(20):5363. doi:10.1088/0031-9155/51/20/019
  • Pyakuryal A, Myint WK, Gopalakrishnan M, et al. A computational tool for the efficient analysis of dose-volume histograms for radiation therapy treatment plans. J Appl Clin Med Phys. 2010;11(1):137–157. doi:10.1120/jacmp.v11i1.3013
  • Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24(1):103–110. doi:10.1118/1.598063
  • Okunieff P, Morgan D, Niemierko A, et al. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32(4):1227–1237. doi:10.1016/0360-3016(94)00475-Z
  • Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med. 2007;23(3-4):115–125. doi:10.1016/j.ejmp.2007.07.001
  • Kallman P, Lind B, Brahme A. An algorithm for maximizing the probability of complication-free tumour control in radiation therapy. Phys Med Biol. 1992;37(4):871–890. doi:10.1088/0031-9155/37/4/004
  • Mallick S, Rath GK, Benson R. Practical radiation oncology. Springer; 2019.
  • Zeman EM, Schreiber EC, Tepper JE. Basics of radiation therapy. In: Abeloff's clinical oncology. Elsevier; 2020. p. 431–460.e3. https://www.sciencedirect.com/science/article/abs/pii/B978032347674400027X
  • Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123–135. doi:10.1016/0360-3016(91)90172-Z
  • Banisharif S, Shahbazi-Gahrouei D, Akhavan A, et al. Determining the optimum tumor control probability model in radiotherapy of glioblastoma multiforme using magnetic resonance imaging data pre-and post-radiation therapy. J Res Med Sci. 2022;27:10. doi:10.4103/jrms.JRMS_1138_20
  • Amin A, El Sayed S, Ezzat A. Dosimetric evaluation of advanced radiotherapy techniques in treating patients with prostatic cancer. Res Oncol. 2017;13(2):40–45. doi:10.21608/resoncol.2017.1654.1036
  • Cao T, Dai Z, Ding Z, et al. Analysis of different evaluation indexes for prostate stereotactic body radiation therapy plans: conformity index, homogeneity index and gradient index. Precis Radiat Oncol. 2019;3(3):72–79. doi:10.1002/pro6.1072
  • Inal A, Duman E, Ozkan EE. Evaluating different radiotherapy treatment plans, in terms of critical organ scoring index, conformity index, tumor control probability, and normal tissue complication probability calculations in early glottic larynx carcinoma. J Cancer Res Ther. 2020;16(3):485–493. doi:10.4103/jcrt.JCRT_888_18
  • MacDonald SM, Ahmad S, Kachris S, et al. Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison. J Appl Clin Med Phys. 2007;8(2):47–60. doi:10.1120/jacmp.v8i2.2423
  • Patel GR, Mandal A, Mishra R, et al. Role of overall treatment time when estimating TCP & NTCP of head & neck radiotherapy treatment plans in altered fractionation. Iran J Med Phys. 2022.
  • Spohn SK, Sachpazidis I, Wiehle R, et al. Influence of urethra sparing on tumor control probability and normal tissue complication probability in focal dose escalated hypofractionated radiotherapy: a planning study based on histopathology reference. Front Oncol. 2021;11:652678. doi:10.3389/fonc.2021.652678