909
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Engineering of the crystalline state towards a defective state of CeCoO3 perovskite for the OER process in alkaline medium

, , , , &
Article: 2231132 | Received 25 Jan 2023, Accepted 24 Jun 2023, Published online: 12 Jul 2023

References

  • Abdelkader A, Rabeh A, Mohamed Ali D, et al. Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage. Energy. 2018;163:351–363. doi:10.1016/J.ENERGY.2018.08.135
  • Onar OC, Uzunoglu M, Alam MS. Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system. J Power Sources. 2006;161:707–722. doi:10.1016/J.JPOWSOUR.2006.03.055
  • Onar OC, Uzunoglu M, Alam MS. Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system. J Power Sources. 2008;185:1273–1283. doi:10.1016/J.JPOWSOUR.2008.08.083
  • Zhang G, Tang X, Qi Z. Research on battery supercapacitor hybrid storage and its application in MicroGrid. Asia-Pacific Power Energy Eng Conf APPEEC. 2010. doi:10.1109/APPEEC.2010.5448231
  • Shrestha NK, Patil SA, Han J, et al. Chemical etching induced microporous nickel backbones decorated with metallic Fe@hydroxide nanocatalysts: an efficient and sustainable OER anode toward industrial alkaline water-splitting. J Mater Chem A. 2022;10:8989–9000. doi:10.1039/D1TA10103J
  • Do TN, You C, Kim J. A CO2 utilization framework for liquid fuels and chemical production: techno-economic and environmental analysis. Energy Environ Sci. 2022;15:169–184. doi:10.1039/D1EE01444G
  • Saha D, Desipio MM, Hoinkis TJ, et al. Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: an insight into reaction intermediates. J Environ Chem Eng. 2018;6:4927–4936. doi:10.1016/J.JECE.2018.07.030
  • Stambouli AB, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev. 2002;6:433–455. doi:10.1016/S1364-0321(02)00014-X
  • Zhou CH, Xia X, Lin CX, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev. 2011;40:5588–5617. doi:10.1039/C1CS15124J
  • Macfarlane DR, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids. Energy Environ Sci. 2013;7:232–250. doi:10.1039/C3EE42099J
  • Wang T, Chen HC, Yu F, et al. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019;16:545–573. doi:10.1016/j.ensm.2018.09.007
  • Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104:4245–4269. doi:10.1021/CR020730K/ASSET/IMAGES/MEDIUM/CR020730KE00045.GIF
  • Mei J, Liao T, Ayoko GA, et al. Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Prog Mater Sci. 2019;103:596–677. doi:10.1016/J.PMATSCI.2019.03.001
  • Liu H, Tao HB, Liu B. Kinetic insights of proton exchange membrane water electrolyzer obtained by operando characterization methods. J Phys Chem Lett. 2022;13:6520–6531. doi:10.1021/ACS.JPCLETT.2C01341/ASSET/IMAGES/LARGE/JZ2C01341_0007.JPEG
  • Wang C, Wang D, Ma X, et al. Isotropy-induced stress relaxation and strong-tolerance for high-rate and long-duration sodium storage by amorphous structure engineering. Adv Funct Mater. 2022;32:2204687, doi:10.1002/ADFM.202204687
  • Bae Y, Hong J. Enhancement of surface morphology and catalytic kinetics of NiAl2O4 spinel-derived Ni catalyst to promote dry reforming of methane at low temperature for the direct application to a solid oxide fuel cell. Chem Eng J. 2022;446:136978, doi:10.1016/J.CEJ.2022.136978
  • Azzouzi M, Gallop NP, Eisner F, et al. Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. Energy Environ Sci. 2022;15:1256–1270. doi:10.1039/D1EE02788C
  • Yasin G, Ali S, Ibraheem S, et al. Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-Air batteries. ACS Catal. 2023;13:2313–2325. doi:10.1021/ACSCATAL.2C05654
  • Musa A B, Tabish M, Kumar A, et al. Microenvironment engineering of Fe-single-atomic-site with nitrogen coordination anchored on carbon nanotubes for boosting oxygen electrocatalysis in alkaline and acidic media. Chem Eng J. 2023;451:138684, doi:10.1016/J.CEJ.2022.138684
  • Yasin G, Ibrahim S, Ibraheem S, et al. Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc–air batteries. J Mater Chem A. 2021;9:18222–18230. doi:10.1039/D1TA05812F
  • Yasin G, Ibraheem S, Ali S, et al. Defects-engineered tailoring of tri-doped interlinked metal-free bifunctional catalyst with lower Gibbs free energy of OER/HER intermediates for overall water splitting. Mater Today Chem. 2022;23:100634, doi:10.1016/J.MTCHEM.2021.100634
  • Ibraheem S, Yasin G, Kumar A, et al. Iron-cation-coordinated cobalt-bridged-selenides nanorods for highly efficient photo/electrochemical water splitting. Appl Catal B Environ. 2022;304:120987. doi:10.1016/J.APCATB.2021.120987
  • Yasin G, Ibrahim S, Ajmal S, et al. Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coord Chem Rev. 2022;469:214669. doi:10.1016/J.CCR.2022.214669
  • Cong Y, Huang S, Mei Y, et al. Metal–organic frameworks-derived self-supported carbon-based composites for electrocatalytic water splitting. Chem – A Eur J. 2021;27:15866–15888. doi:10.1002/CHEM.202102209
  • Ejigu A, Fujisawa K, Spencer BF, et al. On the role of transition metal salts during electrochemical exfoliation of graphite: antioxidants or metal oxide decorators for energy storage applications. Adv Funct Mater. 2018;28:1804357. doi:10.1002/ADFM.201804357
  • Sultan S, Tiwari JN, Singh AN, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater. 2019;9:1900624. doi:10.1002/AENM.201900624
  • Zhu Y, Zhou W, Yu J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem Mater. 2016;28:1691–1697. doi:10.1021/ACS.CHEMMATER.5B04457/ASSET/IMAGES/LARGE/CM-2015-044574_0003.JPEG
  • Aftab S, Nawaz T, Bilal Tahir M. Recent development in shape memory based perovskite materials for energy conversion and storage applications. Int J Energy Res. 2021;45:20545–20558. doi:10.1002/ER.7151
  • Dai J, Zhu Y, Zhong Y, et al. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv Mater Interfaces. 2019;6:1801317. doi:10.1002/ADMI.201801317
  • Xu X, Su C, Zhou W, et al. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv Sci. 2016;3:1500187. doi:10.1002/ADVS.201500187
  • Lah NA C. Late transition metal nanocomplexes: applications for renewable energy conversion and storage. Renew Sustain Energy Rev. 2021;145:111103. doi:10.1016/J.RSER.2021.111103
  • Reddy DA, Kim HK, Kim Y, et al. Multicomponent transition metal phosphides derived from layered double hydroxide double-shelled nanocages as an efficient non-precious co-catalyst for hydrogen production. J Mater Chem A. 2016;4:13890–13898. doi:10.1039/C6TA05741A
  • Askari MB, Salarizadeh P, Beitollahi H, et al. Electro-oxidation of hydrazine on NiFe2O4-rGO as a high-performance nano-electrocatalyst in alkaline media. Mater Chem Phys. 2022;275:125313. doi:10.1016/J.MATCHEMPHYS.2021.125313
  • Wang M, Zhang L, He Y, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2021;9:5320–5363. doi:10.1039/D0TA12152E
  • Li N, Cai L, Wang C, et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J Am Chem Soc. 2021;143:18001–18009. doi:10.1021/JACS.1C04087/SUPPL_FILE/JA1C04087_SI_001.PDF
  • Liu J, Guo L. In situ self-reconstruction inducing amorphous species: a key to electrocatalysis. Matter. 2021;4:2850–2873. doi:10.1016/J.MATT.2021.05.025
  • Li L, Shao Q, Huang X. Amorphous oxide nanostructures for advanced electrocatalysis. Chem – A Eur J. 2020;26:3943–3960. doi:10.1002/CHEM.201903206
  • Hamza MA, Abd El-Rahman SA, El-Shazly AN, et al. Facile one-pot ultrasonic-assisted synthesis of novel Ag@RGO/g-C3N4 ternary 0D@2D/2D nanocomposite with enhanced synergetic tandem adsorption-photocatalytic degradation of recalcitrant organic dyes: kinetic and mechanistic insights. Mater Res Bull. 2021;142:111386. doi:10.1016/J.MATERRESBULL.2021.111386
  • Gao L, Cui X, Sewell CD, et al. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem Soc Rev. 2021;50:8428–8469. doi:10.1039/D0CS00962H
  • Xia D, Gao H, Li M, et al. Transition metal vanadates electrodes in lithium-ion batteries: a holistic review. Energy Storage Mater. 2021;35:169–191. doi:10.1016/J.ENSM.2020.10.023
  • García Núñez C, Manjakkal L, Dahiya R. Energy autonomous electronic skin. Npj Flex Electron. 2019;3:1–24. doi:10.1038/s41528-018-0045-x
  • Lv J, Wang L, Li R, et al. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal. 2021;11:14338–14351. doi:10.1021/ACSCATAL.1C03960/ASSET/IMAGES/LARGE/CS1C03960_0009.JPEG
  • Xuchen L, Tingxian X, Xianghong D. Preparation and characterization of LaNiO3 A/F ratio-sensitive thin film by sol–gel process based on amorphous citrate precursors. Sensors Actuators B Chem. 2000;67:24–28. doi:10.1016/S0925-4005(99)00379-2
  • Khan K, Tareen AK, Aslam M, et al. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale. 2019;11:21622–21678. doi:10.1039/C9NR05919A
  • Deng C, Wang Z, Feng L, et al. Electrocatalysis of sulfur and polysulfides in Li–S batteries. J Mater Chem A. 2020;8:19704–19728. doi:10.1039/D0TA05964A
  • Adhikari S, Murmu M, Kim DH. Core-shell engineered WO3 architectures: recent advances from design to applications. Small. 2022;18:2202654. doi:10.1002/SMLL.202202654
  • El-Shazly AN, Hamza MA, Allam NK. Enhanced photoelectrochemical water splitting via engineered surface defects of BiPO4 nanorod photoanodes. Int J Hydrogen Energy. 2021;46:23214–23224. doi:10.1016/J.IJHYDENE.2021.04.134
  • Fawzy SM, Omar MM, Allam NK. Photoelectrochemical water splitting by defects in nanostructured multinary transition metal oxides. Sol Energy Mater Sol Cells. 2019;194:184–194. doi:10.1016/J.SOLMAT.2019.02.011
  • Zhu Y, Zhong X, Jin S, et al. Oxygen defect engineering in double perovskite oxides for effective water oxidation. J Mater Chem A. 2020;8:10957–10965. doi:10.1039/D0TA04362A
  • Wu J, Guo Y, Liu H, et al. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Res. 2019;12:2296–2301. doi:10.1007/S12274-019-2409-5
  • Song S, Zhou J, Su X, et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ Sci. 2018;11:2945–2953. doi:10.1039/C8EE00773J
  • Shi Z, Wang X, Ge J, et al. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. Nanoscale. 2020;12:13249–13275. doi:10.1039/D0NR02410D
  • Zhai Y, Ren X, Yan J, et al. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021;2:2000096. doi:10.1002/SSTR.202000096
  • Baxter J, Bian Z, Chen G, et al. Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci. 2009;2:559–588. doi:10.1039/B821698C
  • Cummins DR, Martinez U, Sherehiy A, et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat Commun. 2016;7:1–10. doi:10.1038/ncomms11857
  • Park S, Hu Y, Hwang JO, et al. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun. 2012;3:1–8. doi:10.1038/ncomms1643
  • Ghobadifard M, Feizi G, Mohebbi S. Enhanced photocatalytic conversion of organic dyes using CeCoO3/MoS2 heterojunction as a highly effective visible-light-driven photocatalyst. Appl Organomet Chem. 2022;36:e6911. doi:10.1002/AOC.6911
  • Chen N, Du YX, Zhang G, et al. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media. Nano Energy. 2021;81:105605. doi:10.1016/J.NANOEN.2020.105605
  • El-Shazly AN, Hegazy AH, El Shenawy ET, et al. Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production. Sol Energy Mater Sol Cells. 2021;220:110825. doi:10.1016/J.SOLMAT.2020.110825
  • Samsudin AS, Saadiah MA. Ionic conduction study of enhanced amorphous solid bio-polymer electrolytes based carboxymethyl cellulose doped NH4Br. J Non Cryst Solids. 2018;497:19–29. doi:10.1016/J.JNONCRYSOL.2018.05.027
  • Kim T, Jung G, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano. 2013;7:6899–6905. doi:10.1021/NN402077V/SUPPL_FILE/NN402077V_SI_001.PDF
  • Wang R, Li Y, He YL. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. J Mater Chem A. 2019;7:10962–10970. doi:10.1039/C9TA00807A
  • Zhao S, Luo Y, Li C, et al. High-performance photothermal catalytic CO2 reduction to CH4 and CO by ABO3 (A=La, Ce; B=Ni, Co, Fe) perovskite nanomaterials. Ceram Int. 2023;49:20907–20919. doi:10.1016/J.CERAMINT.2023.03.224
  • Idriss H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf Sci. 2021;712:121894. doi:10.1016/J.SUSC.2021.121894
  • Paul A, Ghosh S, Kolya H, et al. New insight into the effect of oxygen vacancies on electrochemical performance of nickel-tin oxide/reduced graphene oxide composite for asymmetric supercapacitor. J Energy Storage. 2023;62:106922. doi:10.1016/J.EST.2023.106922
  • Gross P, Höppe HA. Unravelling the urea-route to boron nitride: synthesis and characterization of the crucial reaction intermediate ammonium bis(biureto)borate. Chem Mater. 2019;31:8052–8061. doi:10.1021/ACS.CHEMMATER.9B02515/ASSET/IMAGES/MEDIUM/CM9B02515_M002.GIF
  • Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small. 2020;16:1905779. doi:10.1002/SMLL.201905779
  • Li Z, Xie Y, Huang Z, et al. Amorphization of LaCoO3 perovskite nanostructures for efficient oxygen evolution. ACS Appl Nano Mater. 2022;5:14209–14215. doi:10.1021/ACSANM.2C02982/ASSET/IMAGES/LARGE/AN2C02982_0005.JPEG
  • Arandiyan H, Mofarah SS, Wang Y, et al. Impact of surface defects on LaNiO3 perovskite electrocatalysts for the oxygen evolution reaction. Chem – A Eur J. 2021;27:14418–14426. doi:10.1002/CHEM.202102672
  • Swathi S, Yuvakkumar R, Ravi G, et al. Rare earth metal (Sm)-doped NiMnO3 nanostructures for highly competent alkaline oxygen evolution reaction. Nanoscale Adv. 2022;4:2501–2508. doi:10.1039/D2NA00022A
  • Du J, Zhang T, Cheng F, et al. Nonstoichiometric perovskite CaMnO3-δ for oxygen electrocatalysis with high activity. Inorg Chem. 2014;53:9106–9114. doi:10.1021/IC501631H/SUPPL_FILE/IC501631H_SI_001.PDF
  • Junita J, Jayalakshmi D, Rodney JD. Combustion-derived BaNiO3 nanoparticles as a potential bifunctional electrocatalyst for overall water splitting. Int J Hydrogen Energy. 2023;48:14287–14298. doi:10.1016/J.IJHYDENE.2022.12.291
  • Weng Z, Huang H, Li X, et al. Coordination tailoring of epitaxial perovskite-derived iron oxide films for efficient water oxidation electrocatalysis. ACS Catal. 2023;37:2751–2760. doi:10.1021/ACSCATAL.2C05147/ASSET/IMAGES/LARGE/CS2C05147_0004.JPEG
  • Wang Q, Wang H, Qi S, et al. Coral-Like LaNixFe1−xO3 perovskite catalyst for high-performance oxygen evolution reaction. J Electrochem Soc. 2022;169:026508. doi:10.1149/1945-7111/AC4AB0
  • Zhang ZH, Zhang Y, Barras A, et al. Preparation of flower-shaped Co-Fe layer double hydroxide nanosheets loaded with Pt nanoparticles by corrosion engineering for efficient electrocatalytic water splitting. ACS Appl Energy Mater. 2022;5:15269–15281. doi:10.1021/ACSAEM.2C02905/ASSET/IMAGES/LARGE/AE2C02905_0009.JPEG
  • Li J, Shu C, Hu A, et al. Tuning oxygen non-stoichiometric surface via defect engineering to promote the catalysis activity of Co3O4 in Li-O2 batteries. Chem Eng J. 2020;381:122678. doi:10.1016/J.CEJ.2019.122678
  • Huang X, Shen T, Zhang T, et al. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv Energy Mater. 2020;10:1900375. doi:10.1002/AENM.201900375
  • Hu F, Zhu S, Chen S, et al. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv Mater. 2017;29:1606570. doi:10.1002/ADMA.201606570