1,037
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Comparative evaluation of flame retardant performance in rigid polyurethane foams: TCPP, TDCP MP, and ATH as promising additives

ORCID Icon &
Article: 2233757 | Received 07 Apr 2023, Accepted 03 Jul 2023, Published online: 16 Jul 2023

References

  • Dong F, Wang Y, Wang S. et al. Flame-retarded polyurethane foam conferred by a bio-based nitrogen-phosphorus-containing flame retardant. React Funct Polym. 2021;168:105057. doi:10.1016/j.reactfunctpolym.2021.105057
  • Hamidov M, Çakmakçi E, VezirKahraman M. Autocatalytic reactive flame retardants for rigid polyurethane foams. Mater Chem Phys. 2021;267:124636. doi:10.1016/j.matchemphys.2021.124636
  • Datta J, Kosiorek P. Synthesis, structure and properties of poly(ether-urethane)s synthesized using a tri-functional oxypropylated glycerol as a polyol. J Therm Anal Calorim. 2017;128:155–167. doi:10.1007/s10973-016-5928-2
  • Gama NV, Ferreira A, Barros-Timmons A. Polyurethane foams: past, present, and future. Materials (Basel). 2018;11(10):1841. doi:10.3390/ma11101841
  • Thirumal M, Khastgir D, Nando GB. Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stab. 2010;95(6):1138–1145. doi:10.1016/j.polymdegradstab.2010.01.035
  • Rong Y, Bo W, Mengdi L. Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols. Industrial Crops Products. 2019;136:121–128. doi:10.1016/j.indcrop.2019.04.073
  • Chen HB, Shen P, Chen MJ, et al. Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl Mater Interfaces. 2016;8:47. doi:10.1021/acsami.5b09730
  • Rao WH, Hu ZY, Xu HX, et al. Flame-retardant flexible polyurethane foams with highly efficient melamine salt. Ind Eng Chem Res. 2017;56:7112–7119. doi:10.1021/acs.iecr.7b01335
  • Son MH, Kim Y, Jo YH, et al. Assessment of chemical asphyxia caused by toxic gases generated from rigid polyurethane foam (RPUF) fires. Forensic Sci Int. 2021;328:111011. doi:10.1016/j.forsciint.2021.111011
  • McKenna ST, Hull TR. The fire toxicity of polyurethane foams. Fire Sci Rev. 2016;5:3. doi:10.1186/s40038-016-0012-3
  • Dufour P, Charlier C. Brominated flame retardant: environmental and exposed individuals' health impact. Ann Biol Clin (Paris). 2017;75(2):146–157. doi:10.1684/abc.2017.1221
  • Sykam K, Sivanandan S, Basak P. 1,2,3-Triazole mediated, non-halogenated phosphorus containing protective coatings from castor oil: flame retardant and anti-corrosion applications. Prog Org Coat. 2023;178:107475. doi:10.1016/j.porgcoat.2023.107475
  • Ji C, Lu Z, Xu L, et al. Global responses to tris(1-chloro-2-propyl)phosphate (TCPP) in rockfish sebastes schlegeli using integrated proteomic and metabolomic approach. Sci Total Environ. 2020;724:138307. doi:10.1016/j.scitotenv.2020.138307
  • Wang C, Chen H, Li H, et al. Review of emerging contaminant tris(1,3-dichloro-2-propyl)phosphate: environmental occurrence, exposure, and risks to organisms and human health. Environ Int. 2020;143:105946. doi:10.1016/j.envint.2020.105946
  • Silva EHP, Aguiar JCF, Ribeiro M. et al. Compression and morphological properties of a bio-based polyurethane foam with aluminum hydroxide. J Mater Des Appl. 2022;236(7). doi:10.1177/14644207211059077
  • Bartczak P, Siwińska-Ciesielczyk K, Haak N, et al. Closed-cell polyurethane spray foam obtained with novel TiO2–ZnO hybrid fillers – mechanical, insulating properties and microbial purity. J Build Eng. 2023;65:105760. doi:10.1016/j.jobe.2022.105760
  • Zhang T, Yu M, Huang Y, et al. Design and manufacturing of cost-effective tannin-based polyurethane foam as an efficient and reusable absorbent for oil and solvents. Ind Crops Prod. 2022;189:115815. doi:10.1016/j.indcrop.2022.115815.
  • Hoffendahl C, Fontaine G, Duquesne S. The combination of aluminum trihydroxide (ATH) and melamine borate (MB) as fire retardant additives for elastomeric ethylene vinyl acetate (EVA). Polym Degrad Stabil. 2015;115:77–88. doi:10.1016/j.polymdegradstab.2015.03.001
  • Al-Maharma AY, Patil SP, Markert P. Effects of porosity on the mechanical properties of additively manufactured components: a critical review. Mater Res Express. 2020;7(12):122001. doi:10.1088/2053-1591/abcc5d
  • Zengin Küçükşenlik N. Investıgatıon the effects of flame retardants on thermal and mechanıcal propertıes of PU foams [Gebze Technıcal Unıversıty Graduate School of Natural and Applıed Scıences Master Thesıs]; 2019.
  • Salasinska K, Borucka M, Leszczyńska M, et al. Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants. J Therm Anal Calorim. 2017;130:131–141. doi:10.1007/s10973-017-6294-4
  • Yang R, Wang B, Han X, et al. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate. Polym Degrad Stab. 2017;144:62–69. doi:10.1016/j.polymdegradstab.2017.08.008
  • Wang SX, Zhao HB, Rao WH, et al. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer. 2018;153:616–625. doi:10.1016/j.polymer.2018.08.068
  • Liu L, Wang Z, Zhu M. Flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam modified by nano zirconium amino-tris-(methylenephosphonate) and expandable graphite. Polym Degrad Stab. 2019;170:108997. doi:10.1016/j.polymdegradstab.2019.108997
  • Bhoyate S, Ionescu M, Kahol PK, et al. Castor-oil derived nonhalogenated reactive flame-retardant-based polyurethane foams with significant reduced heat release rate. J Appl Polym Sci. 2019;136:47276. doi:10.1002/app.47276
  • Izarra I, Borreguero AM, Garrido I, et al. Comparison of flexible polyurethane foams properties from different polymer polyether polyols. Polym Test. 2021;100:107268. doi:10.1016/j.polymertesting.2021.107268
  • Bhoyate S, Ionescu M, Kahol PK, et al. Sustainable flame-retardant polyurethanes using renewable resources. Ind Crop Prod. 2018;123:480–488. doi:10.1016/j.indcrop.2018.07.025
  • Akdoğan E. Effects of some additives on the properties of rigid polyurethane foams: flame retardancy, thermal conductivity and compressive strength [Eskişehir Anadolu University, MSc. thesıs]; 2018.
  • Sykam K, Meka KKR, Donempudi S. Intumescent phosphorus and triazole-based flame-retardant polyurethane foams from castor oil. ACS Omega. 2019;4:1086–1094. doi:10.1021/acsomega.8b02968
  • Vasiljevi J, Colovi M, Korošin NC, et al. Effect of different flame-retardant bridged DOPO derivatives on properties of in situ produced fiber-forming polyamide 6. Polymers (Basel). 2020;12:657. doi:10.3390/polym12030657
  • Matusinovic Z, Wilkie CA. Degradation, stabilization, and flammability of polymer blends. Polymer Blends Handbook. 2014: 1395–1430. doi:10.1007/978-94-007-6064-6_16
  • https://www.marketsandmarkets.com/Market-Reports/flame-retardant-chemicals-market-686.html. Accessed 09 June 2023.
  • Yücel MB. The existence and economy of huntite in Turkey. Natural Resources Economy Bull. 2018;25:31–37.
  • Thirumal M, Singha NK, Khastgir D, et al. Halogen-Free flame-retardant rigid polyurethane foams: effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J Appl Polym Sci. 2010;116(4):2260–2268. doi:10.1002/app.31626